The term “maglev” (Magnetic Levitation) refers not only to the vehicles, but to the railway system as well, specifically designed for magnetic levitation and propulsion. All operational implementations of maglev technology have had minimal overlap with wheeled train technology and have not been compatible with conventional rail tracks. Because they cannot share existing infrastructure, these maglev systems must be designed as complete transportation systems. The Applied Levitation Maglev system is inter-operable with steel rail tracks and would permit maglev vehicles and conventional trains to operate at the same time on the same right of way.
There are three primary types of maglev technology:
For electromagnetic suspension (EMS), electromagnets in the train repel it away from a magnetically conductive (usually steel) track.
electrodynamic suspension (EDS) uses electromagnets on both track and train to push the train away from the rail.
stabilized permanent magnet suspension (SPM) uses opposing arrays of permanent magnets to levitate the train above the rail.
Electro magnetic suspension
In current electromagnetic suspension (EMS) systems, the train levitates above a steel rail while electromagnets, attached to the train, are oriented toward the rail from below. The electromagnets use feedback control to maintain a train at a constant distance from the track, at approximately 15 millimeters.
Electrodynamic suspension
EDS Maglev Propulsion via propulsion coils
In electrodynamic suspension (EDS), both the rail and the train exert a magnetic field, and the train is levitated by the repulsive force between these magnetic fields. The magnetic field in the train is produced by either electromagnets or by an array of permanent magnets. The repulsive force in the track is created by an induced magnetic field in wires or other conducting strips in the track.
At slow speeds, the current induced in these coils and the resultant magnetic flux is not large enough to support the weight of the train. For this reason the train must have wheels or some other form of landing gear to support the train until it reaches a speed that can sustain levitation.
Propulsion coils on the guideway are used to exert a force on the magnets in the train and make the train move forward. The propulsion coils that exert a force on the train are effectively a linear motor: An alternating current flowing through the coils generates a continuously varying magnetic field that moves forward along the track. The frequency of the alternating current is synchronized to match the speed of the train. The offset between the field exerted by magnets on the train and the applied field creates a force moving the train forward.
Stabilized Permanent Magnet suspension
SPM maglev systems differ from EDS maglev in that they use opposing sets of rare earth magnets (typically neodymium alloys in a Halbach array) in the track and vehicle to create permanent, passive levitation; i.e., no power is required to maintain permanent levitation. With no current required for levitation, the system has much less electromagnetic drag, thus requiring much less power to move a given cargo at a given speed.Because of Earnshaw’s theorem, SPM maglev systems require a mechanism to create lateral stability (i.e., controlling the side-to-side movement of the vehicle). One way to provide this stability is to use a set of coils along the bottom of the magnet array on the vehicle being levitated, which centers the vehicle over the rails by means of small amounts of current. Because the voice coils are not needed to provide lift and there is almost no drag, this system uses less power than other maglev systems: when the vehicle is centered over the rails, it uses no power. As the vehicle navigates a curve, the controller moves the vehicle to a ‘balance point’ inside the curve so that the (magnetic) centripetal pull of the magnetic rails in the ground offset the vehicle’s (kinetic) centrifugal momentum. This balance point varies based on the vehicle’s weight, which the controller automatically accounts for, resulting in zero steady state power
consumption.

Magnetic Levitating Train
The term “maglev” (Magnetic Levitation) refers not only to the vehicles, but to the railway system as well, specifically designed for magnetic levitation and propulsion. All operational implementations of maglev technology have had minimal overlap with wheeled train technology and have not been compatible with conventional rail tracks. Because they cannot share existing infrastructure, these maglev systems must be designed as complete transportation systems. The Applied Levitation Maglev system is inter-operable with steel rail tracks and would permit maglev vehicles and conventional trains to operate at the same time on the same right of way.

Levitation Effect
There are three primary types of maglev technology:
Electromagnetic suspension (EMS) Electromagnets in the train repel it away from a magnetically conductive (usually steel) track.
Electrodynamic suspension (EDS) uses electromagnets on both track and train to push the train away from the rail.
Stabilized permanent magnet suspension (SPM) uses opposing arrays of permanent magnets to levitate the train above the rail.
Electro magnetic suspension
In current electromagnetic suspension (EMS) systems, the train levitates above a steel rail while electromagnets, attached to the train, are oriented toward the rail from below. The electromagnets use feedback control to maintain a train at a constant distance from the track, at approximately 15 millimeters.
Electrodynamic suspension
EDS Maglev Propulsion via propulsion coils.In electrodynamic suspension (EDS), both the rail and the train exert a magnetic field, and the train is levitated by the repulsive force between these magnetic fields. The magnetic field in the train is produced by either electromagnets or by an array of permanent magnets. The repulsive force in the track is created by an induced magnetic field in wires or other conducting strips in the track.
At slow speeds, the current induced in these coils and the resultant magnetic flux is not large enough to support the weight of the train. For this reason the train must have wheels or some other form of landing gear to support the train until it reaches a speed that can sustain levitation.
Propulsion coils on the guideway are used to exert a force on the magnets in the train and make the train move forward. The propulsion coils that exert a force on the train are effectively a linear motor: An alternating current flowing through the coils generates a continuously varying magnetic field that moves forward along the track. The frequency of the alternating current is synchronized to match the speed of the train. The offset between the field exerted by magnets on the train and the applied field creates a force moving the train forward.
Stabilized Permanent Magnet suspension
SPM maglev systems differ from EDS maglev in that they use opposing sets of rare earth magnets (typically neodymium alloys in a Halbach array) in the track and vehicle to create permanent, passive levitation; i.e., no power is required to maintain permanent levitation. With no current required for levitation, the system has much less electromagnetic drag, thus requiring much less power to move a given cargo at a given speed.Because of Earnshaw’s theorem, SPM maglev systems require a mechanism to create lateral stability (i.e., controlling the side-to-side movement of the vehicle). One way to provide this stability is to use a set of coils along the bottom of the magnet array on the vehicle being levitated, which centers the vehicle over the rails by means of small amounts of current. Because the voice coils are not needed to provide lift and there is almost no drag, this system uses less power than other maglev systems: when the vehicle is centered over the rails, it uses no power. As the vehicle navigates a curve, the controller moves the vehicle to a ‘balance point’ inside the curve so that the (magnetic) centripetal pull of the magnetic rails in the ground offset the vehicle’s (kinetic) centrifugal momentum. This balance point varies based on the vehicle’s weight, which the controller automatically accounts for, resulting in zero steady state power consumption.
YouTube-Superconducting Maglev Train Models