The degree of the “fan bundle” June 7, 2010
Posted by Dung Nguyen in Curves, Vector Bundles.add a comment
I came across this cute little problem while I was trying to solve an enumerative problem. The problem looks like it should be trivially easy, but for some reason it took me quite a while to figure it out ( without using tools from enumerative geometry ). This shows that my intuition about vector bundles is extremely bad.
The problem is as follows :
Consider a curve of degree
and genus
inside the projective space
. Take a point
and consider the line bundle
on
defined as follows : at each point
of
, the fiber of
is the tangent line to the projective line
at
. Now what is the degree of
?
The solution I come up with is this : First we notice that we can define this line bundle over any subvarieties not passing through and we call this the fan bundle. ( I did a google search to make sure that this name hasn’t been used elsewhere ). We would expect that the degree of the fan bundle is proportional to the degree of the variety it is defined on. But the problem is we don’t have a line bundle on the whole projective space.
One way to get around this is to blow up at
. This way the lines going through
get separated and hence we can define the fan bundle on the whole space. Any rational equivalence of algebraic cycles away from
is preserved so now we can claim that the degree of
on
is
times that of
on any line
. To compute the degree of the fan bundle on
, we restrict to two-dimensional setting: consider the plane
generated by
and
. Then the fan bundle on
is just the normal bundle to
in
, so has degree
. Thus, the fan bundle in
has degree
, the genus is irrelevant.
I’m also curious to what the answer would be like in the real setting. My guess is that the answer is trivial for space curve, and is the winding number for plane curve, but I never learned vector bundles in topological setting ( I wish I did ) so I won’t dare to think.