
Online
seminar

Audience
People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Training objectives
• Be able to configure, build and install the Linux kernel on an embedded system.
• Be able to understand the overall architecture of the Linux kernel, and how user-

space applications interact with the Linux kernel.
• Be able to develop simple but complete Linux kernel device drivers, thanks to the

development from scratch of two drivers for two different hardware devices, that
illustrate all the major concepts of the course.

• Be able to navigate through the device drivers mechanisms of the Linux kernel:
Device Tree, device model, bus infrastructures.

• Be able to develop device drivers that communicate with hardware devices.
• Be able to develop drivers that expose functionality of hardware devices to Linux

user-space applications: character devices, kernel subsystems.
• Be able to use the major kernel mechanisms needed for device driver development:

memory management, locking, interrupt handling, sleeping, DMA.
• Be able to debug Linux kernel issues, using a variety of debugging techniques and

mechanisms.
Prerequisites

• Solid experience with the C programming language: participants must be
familiar with the usage of complex data types and structures, pointers, function
pointers, and the C pre-processor.

• Knowledge and practice of UNIX or GNU/Linux commands: participants must
be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask ques-

tions at any time.
• Practical demonstrations done by the trainer, based on practical labs, over video-

conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

• Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Embedded Linux kernel
and driver development

training

Course duration
U 7 half days – 28 hours

Language

Materials English

Oral Lecture English
French

Trainer
One of the following engineers

• Grégory Clement
• Maxime Chevallier
• Miquèl Raynal
• Théo Lebrun

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/linux-kernel
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/theo-lebrun/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
Mandatory equipment:

• Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
• Webcam and microphone (preferably from an audio headset).
• High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

BeagleBone Black
BeagleBone Black or BeagleBone Black
Wireless board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI

buses, I2C buses and more.
• Ethernet or WiFi

BeaglePlay
BeaglePlay board

• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated
MCU and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,

HDMI
• 2.4 and 5 GHz WiFi, Bluetooth and also

Ethernet
• 1 MicroBus Header (SPI, I2C, UART, ...),

OLDI and CSI connector.

NXP i.MX93 FRDM
NXP FRDM-IMX93 development board

• NXP i.MX93 SoC (Dual Cortex-A55 +
Cortex-M33)

• 2 GB LPDDR4X, 32 GB eMMC
• Dual Gigabit Ethernet
• USB 2.0 Type-C + USB Type-A
• CAN interface
• MicroSD slot, EEPROM
• Wi-Fi 6 + Bluetooth 5.4 + 802.15.4

(MAYA-W276)
• HDMI output (via LVDS), MIPI DSI and

CSI
• Audio jack (MQS), buttons and LEDs
• SWD and UART debug

2



Training Schedule

Half day 1
Lecture Introduction to the Linux kernel • Roles of the Linux kernel

• Kernel user interface (/proc and /sys)
• Overall architecture
• Versions of the Linux kernel
• Kernel source tree organization

Demo Downloading the Linux kernel
source code

• Download the Linux kernel code from Git

Lecture Linux kernel source code • Specifics of Linux kernel development
• Coding standards
• Stability of interfaces
• Legal aspects, licensing
• Organization of the kernel community
• The release schedule and process: release candidates, stable releases,

long-term support, etc.

Demo Kernel sources • Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds
of information.

• Using the UNIX command line and then kernel source code browsers.

Lecture Configuring, compiling and boot-
ing the Linux kernel

• Kernel configuration.
• Native and cross compilation. Generated files.
• Booting the kernel. Kernel booting parameters.
• Mounting a root filesystem on NFS.

Demo Kernel configuration, cross-
compiling and booting on NFS

• Configuring, cross-compiling and booting a Linux kernel with NFS
boot support.

Half day 2
Lecture Linux kernel modules • Linux device drivers

• A simple module
• Programming constraints
• Loading, unloading modules
• Module dependencies
• Adding sources to the kernel tree

Demo Writing modules • Write a kernel module with several capabilities.
• Access kernel internals from your module.
• Set up the environment to compile it

Lecture Describing hardware devices • Discoverable hardware: USB, PCI
• Non-discoverable hardware
• Extensive details on Device Tree: overall syntax, properties, design

principles, examples
• YAML bindings and meta hardware description to verify Device Tree

content

Demo Describing hardware devices • Create your own Device Tree file
• Configure LEDs connected to GPIOs
• Describe an I2C-connected device in the Device Tree

Half day 3
3



Lecture Pin muxing • Understand the pinctrl framework of the kernel
• Understand how to configure the muxing of pins

Demo Pin muxing • Configure the pinmuxing for the I2C bus used to communicate with
the Nunchuk

• Validate that the I2C communication works using user space tools

Lecture Linux device model • Understand how the kernel is designed to support device drivers
• The device model
• Binding devices and drivers
• Platform devices, Device Tree
• Interface in user space: /sys

Lecture Introduction to the I2C API • The I2C subsystem of the kernel
• Details about the API provided to kernel drivers to interact with I2C

devices

Demo Communicate with the Nunchuk
over I2C

• Explore the content of /dev and /sys and the devices available on
the embedded hardware platform.

• Implement a driver that registers as an I2C driver.
• Communicate with the Nunchuk and extract data from it.

Half day 4
Lecture Kernel frameworks • Block vs. character devices

• Interaction of user space applications with the kernel
• Details on character devices, file_operations, ioctl(), etc.
• Exchanging data to/from user space
• The principle of kernel frameworks

Lecture The input subsystem • Principle of the kernel input subsystem
• API offered to kernel drivers to expose input devices capabilities to

user space applications
• User space API offered by the input subsystem

Demo Expose the Nunchuk functionality
to user space

• Extend the Nunchuk driver to expose the Nunchuk features to user
space applications, as a input device.

• Test the operation of the Nunchuk using evtest

Lecture Memory management • Linux: memory management - Physical and virtual (kernel and user)
address spaces.

• Linux memory management implementation.
• Allocating with kmalloc().
• Allocating by pages.
• Allocating with vmalloc().

Half day 5
Lecture I/O memory • I/O memory range registration.

• I/O memory access.
• Memory ordering and barriers

Demo Minimal platform driver and access
to I/O memory

• Implement a minimal platform driver
• Modify the Device Tree to instantiate the new serial port device.
• Reserve the I/O memory addresses used by the serial port.
• Read device registers and write data to them, to send characters on

the serial port.

4



Lecture The misc kernel subsystem • What the misc kernel subsystem is useful for
• API of the misc kernel subsystem, both the kernel side and user space

side

Demo Output-only serial port driver • Extend the driver started in the previous lab by registering it into the
misc subsystem

• Implement serial port output functionality through the misc subsystem
• Test serial output from user space

Half day 6
Lecture Processes, scheduling, sleeping

and interrupts
• Process management in the Linux kernel.
• The Linux kernel scheduler and how processes sleep.
• Interrupt handling in device drivers: interrupt handler registration and

programming, scheduling deferred work.

Demo Sleeping and handling interrupts in
a device driver

• Adding read capability to the character driver developed earlier.
• Register an interrupt handler.
• Waiting for data to be available in the read() file operation.
• Waking up the code when data is available from the device.

Lecture Locking • Issues with concurrent access to shared resources
• Locking primitives: mutexes, semaphores, spinlocks.
• Atomic operations.
• Typical locking issues.
• Using the lock validator to identify the sources of locking problems.

Demo Locking • Add locking to the current driver

Half day 7
Lecture DMA: Direct Memory Access • Peripheral DMA vs. DMA controllers

• DMA constraints: caching, addressing
• Kernel APIs for DMA: dma-mapping, dmaengine, dma-buf

Demo DMA: Direct Memory Access • Setup streaming mappings with the dma API
• Configure a DMA controller with the dmaengine API
• Configure the hardware to trigger DMA transfers
• Wait for DMA completion

Lecture Driver debugging techniques • Debugging with printing functions
• Using Debugfs
• Analyzing a kernel oops
• Using kgdb, a kernel debugger
• Using the Magic SysRq commands

Demo Investigating kernel faults • Studying a broken driver.
• Analyzing a kernel fault message and locating the problem in the

source code.

Lecture Power management • Overview of the power management features of the kernel
• Topics covered: clocks, suspend and resume, dynamic frequency scal-

ing, saving power during idle, runtime power management, regulators,
etc.

Lecture If time left • mmap

5



Labs
The practical labs of this training session use the following hardware peripherals to illustrate the development of Linux device
drivers:

• A Wii Nunchuk, which is connected over the I2C bus to the BeagleBone Black board. Its driver will use the Linux input
subsystem.

• An additional UART, which is memory-mapped, and will use the Linux misc subsystem.
While our explanations will be focused on specifically the Linux subsystems needed to implement these drivers, they will always be
generic enough to convey the general design philosophy of the Linux kernel. The information learnt will therefore apply beyond
just I2C, input or memory-mapped devices.

6


