Course duration

7 half days — 28 hours

Language

Materials English

Oral Lecture English

French

Trainer

One of the following engineers

= Grégory Clement
= Maxime Chevallier
= Miquel Raynal

= Théo Lebrun

Contact

training@bootlin.com

+33 484 258 097

pbootlin

bootlin.com

Online
People developing devices using the Linux kernel seminar

People supporting embedded Linux system developers.

= Be able to configure, build and install the Linux kernel on an embedded system.

= Be able to understand the overall architecture of the Linux kernel, and how user-
space applications interact with the Linux kernel.

= Be able to develop simple but complete Linux kernel device drivers, thanks to the
development from scratch of two drivers for two different hardware devices, that
illustrate all the major concepts of the course.

= Be able to navigate through the device drivers mechanisms of the Linux kernel:
Device Tree, device model, bus infrastructures.

= Be able to develop device drivers that communicate with hardware devices.

= Be able to develop drivers that expose functionality of hardware devices to Linux
user-space applications: character devices, kernel subsystems.

= Be able to use the major kernel mechanisms needed for device driver development:
memory management, locking, interrupt handling, sleeping, DMA.

= Be able to debug Linux kernel issues, using a variety of debugging techniques and
mechanisms.

= Solid experience with the C programming language: participants must be
familiar with the usage of complex data types and structures, pointers, function
pointers, and the C pre-processor.

= Knowledge and practice of UNIX or GNU/Linux commands: participants must
be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

= Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin's Embedded Linux course allows to fulfill this pre-requisite.

= Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

= Lectures delivered by the trainer, over video-conference. Participants can ask ques-
tions at any time.

= Practical demonstrations done by the trainer, based on practical labs, over video-
conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

= Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

= Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/linux-kernel
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/theo-lebrun/
mailto:training@bootlin.com
https://bootlin.com

Required equipement

Mandatory equipment:

= Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
= Webcam and microphone (preferably from an audio headset).
» High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

BeagleBone Black

BeagleBone Black or BeagleBone Black
Wireless board
= An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments
= USB powered
= 512 MB of RAM
= 2 or 4 GB of on-board eMMC storage
= USB host and device
= HDMI output
= 2 x 46 pins headers, to access UARTs, SPI
buses, 12C buses and more.
= Ethernet or WiFi

BeaglePlay

BeaglePlay board

= Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

= SoC with 3D acceleration, integrated
MCU and many other peripherals.

= 2 GB of RAM

= 16 GB of on-board eMMC storage

= USB host and USB device, microSD,
HDMI

= 2.4 and 5 GHz WiFi, Bluetooth and also
Ethernet

= 1 MicroBus Header (SPI, 12C, UART, ...),
OLDI and CSI connector.

NXP i.MX93 FRDM

NXP FRDM-IMX93 development board

= NXP i.MX93 SoC (Dual Cortex-A55 +
Cortex-M33)

» 2 GB LPDDR4X, 32 GB eMMC

= Dual Gigabit Ethernet

= USB 2.0 Type-C + USB Type-A

= CAN interface

= MicroSD slot, EEPROM

= Wi-Fi 6 + Bluetooth 5.4 + 802.15.4
(MAYA-W276)

= HDMI output (via LVDS), MIPI DSI and
Csl

= Audio jack (MQS), buttons and LEDs

= SWD and UART debug

Training Schedule

Half day 1
Lecture Introduction to the Linux kernel Roles of the Linux kernel
Kernel user interface (/proc and /sys)
Overall architecture
Versions of the Linux kernel
Kernel source tree organization

Demo Downloading the Linux kernel Download the Linux kernel code from Git

source code

Lecture Linux kernel source code Specifics of Linux kernel development
Coding standards
Stability of interfaces
Legal aspects, licensing
Organization of the kernel community
The release schedule and process: release candidates, stable releases,
long-term support, etc.

Demo Kernel sources Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds
of information.

Using the UNIX command line and then kernel source code browsers.

Lecture Configuring, compiling and boot- Kernel configuration.

ing the Linux kernel Native and cross compilation. Generated files.
Booting the kernel. Kernel booting parameters.
Mounting a root filesystem on NFS.

Demo Kernel configuration, cross- Configuring, cross-compiling and booting a Linux kernel with NFS

compiling and booting on NFS boot support.

Half day 2

Lecture Linux kernel modules Linux device drivers
A simple module
Programming constraints
Loading, unloading modules
Module dependencies
Adding sources to the kernel tree

Demo Writing modules Write a kernel module with several capabilities.
Access kernel internals from your module.

Set up the environment to compile it

Lecture Describing hardware devices Discoverable hardware: USB, PCI
Non-discoverable hardware
Extensive details on Device Tree: overall syntax, properties, design
principles, examples
YAML bindings and meta hardware description to verify Device Tree
content

Demo Describing hardware devices Create your own Device Tree file
Configure LEDs connected to GPIOs
Describe an 12C-connected device in the Device Tree

Half day 3

Lecture

Pin muxing

Understand the pinctrl framework of the kernel
Understand how to configure the muxing of pins

Demo

Pin muxing

Configure the pinmuxing for the 12C bus used to communicate with
the Nunchuk
Validate that the 12C communication works using user space tools

Lecture

Linux device model

Understand how the kernel is designed to support device drivers
The device model

Binding devices and drivers

Platform devices, Device Tree

Interface in user space: /sSys

Lecture

Introduction to the 12C API

The 12C subsystem of the kernel
Details about the API provided to kernel drivers to interact with 12C
devices

Demo

Communicate with the Nunchuk
over 12C

Explore the content of /dev and /sys and the devices available on
the embedded hardware platform.

Implement a driver that registers as an 12C driver.

Communicate with the Nunchuk and extract data from it.

Half day 4

Lecture

Kernel frameworks

Block vs. character devices

Interaction of user space applications with the kernel

Details on character devices, file_operations, ioct1(), etc.
Exchanging data to/from user space

The principle of kernel frameworks

Lecture

The input subsystem

Principle of the kernel input subsystem

API offered to kernel drivers to expose input devices capabilities to
user space applications

User space API offered by the input subsystem

Demo

Expose the Nunchuk functionality
to user space

Extend the Nunchuk driver to expose the Nunchuk features to user
space applications, as a input device.
Test the operation of the Nunchuk using evtest

Lecture

Memory management

Linux: memory management - Physical and virtual (kernel and user)
address spaces.

Linux memory management implementation.

Allocating with kmalloc ().

Allocating by pages.

Allocating with vmalloc().

Half day 5

Lecture

[/O memory

I/O memory range registration.
[/O memory access.
Memory ordering and barriers

Demo

Minimal platform driver and access
to 1/0 memory

Implement a minimal platform driver

Modify the Device Tree to instantiate the new serial port device.
Reserve the 1/0 memory addresses used by the serial port.

Read device registers and write data to them, to send characters on
the serial port.

Lecture

The misc kernel subsystem

What the misc kernel subsystem is useful for
API of the misc kernel subsystem, both the kernel side and user space
side

Demo Output-only serial port driver Extend the driver started in the previous lab by registering it into the
misc subsystem
Implement serial port output functionality through the misc subsystem
Test serial output from user space
Half day 6
Lecture Processes, scheduling, sleeping Process management in the Linux kernel.
and interrupts The Linux kernel scheduler and how processes sleep.
Interrupt handling in device drivers: interrupt handler registration and
programming, scheduling deferred work.
Demo Sleeping and handling interrupts in Adding read capability to the character driver developed earlier.
a device driver Register an interrupt handler.
Waiting for data to be available in the read () file operation.
Waking up the code when data is available from the device.
Lecture Locking Issues with concurrent access to shared resources
Locking primitives: mutexes, semaphores, spinlocks.
Atomic operations.
Typical locking issues.
Using the lock validator to identify the sources of locking problems.
Demo Locking Add locking to the current driver
Half day 7
Lecture DMA: Direct Memory Access Peripheral DMA vs. DMA controllers
DMA constraints: caching, addressing
Kernel APIs for DMA: dma-mapping, dmaengine, dma-buf
Demo DMA: Direct Memory Access Setup streaming mappings with the dma API
Configure a DMA controller with the dmaengine API
Configure the hardware to trigger DMA transfers
Wait for DMA completion
Lecture Driver debugging techniques Debugging with printing functions
Using Debugfs
Analyzing a kernel oops
Using kgdb, a kernel debugger
Using the Magic SysRq commands
Demo Investigating kernel faults Studying a broken driver.
Analyzing a kernel fault message and locating the problem in the
source code.
Lecture Power management Overview of the power management features of the kernel
Topics covered: clocks, suspend and resume, dynamic frequency scal-
ing, saving power during idle, runtime power management, regulators,
etc.
Lecture If time left mmap

The practical labs of this training session use the following hardware peripherals to illustrate the development of Linux device
drivers:

= A Wii Nunchuk, which is connected over the 12C bus to the BeagleBone Black board. lIts driver will use the Linux input

subsystem.
= An additional UART, which is memory-mapped, and will use the Linux misc subsystem.

While our explanations will be focused on specifically the Linux subsystems needed to implement these drivers, they will always be
generic enough to convey the general design philosophy of the Linux kernel. The information learnt will therefore apply beyond
just 12C, input or memory-mapped devices.

