
Thread-Modular Shape Analysis

Alexey Gotsman
University of Cambridge

Alexey.Gotsman@cl.cam.ac.uk

Josh Berdine
Microsoft Research
jjb@microsoft.com

Byron Cook
Microsoft Research

bycook@microsoft.com

Mooly Sagiv∗

Tel-Aviv University
msagiv@post.tau.ac.il

Abstract
We present the first shape analysis for multithreaded programs that
avoids the explicit enumeration of execution-interleavings. Our ap-
proach is to automatically infer a resource invariant associated with
each lock that describes the part of the heap protected by the lock.
This allows us to use a sequential shape analysis on each thread.
We show that resource invariants of a certain class can be charac-
terized as least fixed points and computed via repeated applications
of shape analysis only on each individual thread. Based on this ap-
proach, we have implemented a thread-modular shape analysis tool
and applied it to concurrent heap-manipulating code from Windows
device drivers.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Abstract interpretation, concurrent programming,
shape analysis, static analysis

1. Introduction
The analysis of multithreaded programs is complicated in the con-
text of heap-manipulation, in particular, in the presence ofdeep
heap update, which occurs when linked data structures are altered
after traversing some a priori unbounded distance. Flow-insensitive
analysis for such programs is too imprecise. Hence, to date, the
sound, accurate, and automatic analyses for these programs have
implemented flow-sensitive analyses that rely on enumerating the
interleavings of executions of threads in the program [26]. This
leads to state-space explosion and unscalability.

Our goal in this paper is to create a shape analysis for programs
with deep heap update that is scalable, sound, and accurate. We do
so by constructing a shape analysis that avoids enumerating inter-
leavings. Our approach is to infer aresource invariant[20, 19] as-
sociated with each lock that describes the part of the heap protected
by the lock and has to be preserved by every thread. E.g., a resource
invariant for a lock can state that the lock protects a cyclic doubly-
linked list with a sentinel node pointed to by the variablehead. For

∗A part of this work was done while visiting Microsoft Research, Cam-
bridge, UK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

any given thread, the resource invariant restricts how other threads
can interfere with it. If resource invariants are known, analyzing a
multithreaded program does not require enumerating interleavings
and can be done using a sequential shape analysis. The challenge is
to infer the resource invariants.

A resource invariant describes two orthogonal kinds of infor-
mation: it simultaneously carves out the part of the heap protected
by the lock and defines the possible shapes that this part can have
during program execution. Hence, informally, resource invariants
for heap-manipulating programs are not least fixed points of any
first-order equation. We show that, if we specify the borders of the
part of the heap protected by a lock (i.e., the former kind of infor-
mation), then we can characterize the shape of the part (i.e., the
latter kind of information) as a least fixed point. This fixed point
can be computed by repeatedly performing shape analysis on each
individual thread, but not on the whole program, i.e., performing
the analysisthread-modularly. The analysis is able to establish that
the program being analyzed is memory-safe (i.e., it does not deref-
erence heap cells that are not allocated), does not leak memory, and
does not have data races (including races on heap cells).

We specify the borders of the part of the heap protected by a
lock with two sets of program variables—the set ofentry points
and the set ofexit points. The part of the heap protected by the
lock is defined as everything that is reachable from entry points up
to exit points. Therefore in the subheap carved out by a resource
invariant, exit points are pointers that lead to parts of the global
heap owned by others. Fortunately, for systems code (e.g., device
drivers), we find that automatic tools [22, 25, 5] suffice for inferring
the entry points1. In more complex cases the entry and exit points
can be given by the user as annotations (or may be other analyses
for them could be found).

Our approach can be rephrased as follows: we assume that the
borders between parts of the heap owned by different threads or
protected by different locks arestable in the sense that they are
pointed to by fixed stack variables. These borders are not required
to be immovable, and we do not preclude ownership transfer of
heap cells between areas owned by different threads or locks. That
is, while the stack variables which mark the borders are fixed,
their values are mutable. So heap cells can move between the parts
owned by different threads or protected by different locks.

Our contributions can be summarized as follows:

• We propose a framework for constructing thread-modular pro-
gram analyses, which is particularly suitable for shape analy-
ses due to the locality exhibited by the semantics of heap-
manipulation (Section 3). Our framework is parametric in the
sequential shape analysis domain and can be instantiated with
different domains.

1 Moreover, the soundness of our analysis does not depend on the particular
association of locks and entry points: the analysis can be used with any
association.

1

V ::= x, y, . . .
E ::= null | V
Π ::= Π ∧Π | E = E
Σ ::= Σ ∗ Σ | emp | true | E 7→{prev: E, next: E}

| dll(E, E, E, E)

Φ ::= ∃~V .Π ∧ Σ

Figure 2. A subsetΦ of separation logic formulae

• We give a fixed-point characterization of a class of resource in-
variants for heap-manipulating programs that provides a way
to compute them via a thread-modular fixed-point computa-
tion (Section 4). For programs that have resource invariants
from this class, the precision of our thread-modular analysis de-
pends only on the precision of the underlying (sequential) shape
analysis.

• Based on the framework and on the fixed-point characterization
we develop a thread-modular shape analysis (Section 5) and ap-
ply it to multithreaded heap-manipulating code from Windows
device drivers (Section 6).

2. Illustrative example
The example program in a C-like language shown in Figure 1
represents a typical pattern occurring in systems code, such as
Windows device drivers. In this case two concurrently executing
threads are accessing the same cyclic doubly-linked list protected
by a lock`. The list is accessed via a sentinel head node pointed
to by a variableh. In this examplethread1 adds nodes to the
head of the list andthread2removes nodes from the head of the
list. When applied to this code, the implementation of our analysis
presented in Sections 5.2 and 6 establishes that the area of the heap
protected by the lock—its resource invariant—has the shape of a
cyclic doubly-linked list and that the program is memory-safe (i.e.,
it does not dereference heap cells that are not allocated), does not
leak memory, and has no data races (including races on heap-cells).

The analysis uses an underlying sequential shape analysis,
which is similar to the one presented in [9]. The abstract states and
resource invariants in the analysis denote sets of stack-heap pairs
and are represented by disjunctions of formulae in the subset of
separation logic [23] defined in Figure 2. The informal meaning of
the formulae is as follows:

• emp describes states where the heap is empty, with no allocated
locations.

• E 7→{prev: E1, next: E2} describes states where the heap con-
tains a single allocated locationE, with contents being a struc-
ture in which the fieldsprevandnextare equal toE1 andE2.
The values of the other fields in the structure are unspecified by
this formula.

• Σ1 ∗ Σ2 describes states where the heap is the union of two
disjoint heaps (with no locations in common), one satisfying
Σ1 and the other satisfyingΣ2.

• E1 = E2 describes states where the stack givesE1 andE2

equal values.

• dll(E1, E2, E3, E4) is defined as the least predicate such that

dll(E1, E2, E3, E4) ⇔ ∃x.(E1 = E3 ∧ E2 = E4 ∧ emp) ∨
(E1 7→{prev: E2, next: x} ∗ dll(x, E1, E3, E4))

and represents all of the states in which the heap has the shape
of a (possibly empty) doubly-linked list, whereE1 is the ad-
dress of the first node of the list,E4 is the address of the last

node,E2 is the pointer in theprevfield of the first node, andE3

is the pointer in thenextfield of the last node.

• The meaning of propositional connectives,true and the existen-
tial quantifier is standard.

The analysis first uses a tool for analyzing correlations between
locks and program variables, such as [22, 25, 5], to determine that
the variableh is protected by the lock̀. The variableh becomes an
entry pointassociated with the lock̀: the part of the heap protected
by the lock is reachable from the entry point. There are no exit
points associated with the lock̀in this example. The analysis is
performed iteratively. On each iteration, we analyze the code of
each thread and discover new shapes the part of the heap protected
by each lock can have—new disjuncts in its resource invariant.
On the next iteration each thread is re-analyzed taking the newly
discovered disjuncts into account. This loop is performed until no
new disjuncts in the resource invariant are discovered, i.e., until
we reach a fixed point on the value of the resource invariant. Note
that the particular order of the iteration is not important for the
soundness of the analysis. In the example below we chose the order
that is convenient to illustrate how the analysis works.

Executing the analysis. As a first step, we run the underlying
sequential shape analysis on themain function to determine the
initial approximationI0 = h 7→{prev: h, next: h} of the resource
invariant associated with the lock`. The initial states of the threads
in this case areemp.

First iteration.We run the underlying sequential shape analysis
on the code ofthread1with the treatment foracquire andrelease
commands described below. The analysis performs a fixed-point
computation to determine invariants of all the loops inthread1.
Suppose the analysis reaches line 14 with an abstract states. Upon
acquiring the lock̀ the threadgets ownershipof the part of the heap
protected by the lock. We mirror this in the analysis by∗-conjoining
the current approximationI0 of the resource invariant associated
with the lock` to the current states yielding s ∗ I0. The analysis
of the code in lines 15–20 starting from this state then gives us
the states1 = s ∗ h 7→{prev: n, next: n} ∗ n 7→{prev: h, next: h}
at line 21. Upon releasing the lock̀ the thread has to give up
the ownership of the part of the heap protected by the lock. This
means that the analysis has to partition the current heaps1 into
two parts, one of which becomes the local heap of the thread (the
part of the heap that the thread owns) and the other is added as a
new disjunct to the resource invariant. We compute the partitioning
in the following way: the part of the heap reachable from the
entry points associated with the lock` becomes a new disjunct in
the resource invariant and the rest of the heap becomes the local
state of the thread. Intuitively, when a thread modifies pointers
to a heap cell so that it becomes reachable from the entry points
associated with a lock, the cell becomes protected by the lock and
a part of its resource invariant. In this way, we discover a new
disjunctI1 = ∃x.h 7→{prev: x, next: x} ∗ x7→{prev: h, next: h} in
the resource invariant and a new states reachable right after line
21. Note that since the variablen is not an entry point associated
with the lock`, we existentially quantify it inI1. We keep running
the fixed-point computation defined by the underlying sequential
shape analysis starting from this state to discover the invariant of
the loop in line 13 (as well as all other loops in the thread). The
processing of lines 14 and 21 is the same as before, i.e., we use the
same approximationI0 of the resource invariant and get the same
disjunctI1. We stop when the underlying shape analysis reaches a
fixed point. One new disjunctI1 of the resource invariant has been
discovered.

We now analyze the code ofthread2. Whenever the analysis
reaches line 28 with an abstract stateq, we conjoin the current
approximationI1 of the resource invariant to the stateq yielding

2

1 struct ListEntry
2 {
3 ListEntry* next;
4 ListEntry* prev;
5 int data;
6 };
7
8 Lock`;
9 ListEntry* h;

10 thread1() {
11 int data;
12 ListEntry* n;
13 while (nondet()) {

. . .
14 acquire(`);
15 n = newListEntry;
16 n�data= data;
17 n�next= h�next;
18 n�prev= h;
19 h�next= n;
20 n�next�prev= n;
21 release(`);

. . .
22 }
23 }

24 thread2(){
25 int data;
26 ListEntry* n;
27 while (nondet()) {

. . .
28 acquire(`);
29 n = h�next;
30 if (n != h) {
31 n�prev�next= n�next;
32 n�next�prev= n�prev;
33 data= n�data;
34 deleten;
35 }
36 release(`);

. . .
37 }
38 }

39 main() {
40 h = newListEntry;
41 h�next= h;
42 h�prev= h;
43 startThread(&thread1);
44 startThread(&thread2);
45 }

Figure 1. Example program.nondet() represents non-deterministic choice.

q ∗ I1 and analyze the code in lines 29–35 starting from this state.
This gives us the stateq1 = q∗h 7→{prev: h, next: h} at line 36. We
again take the part of the heap reachable fromh as a new disjunct
in the resource invariant and let the rest of the heap be a new local
state of the thread. In this case the new disjunct in the resource
invariant is the same as the starting oneI0, so, no new disjuncts in
the resource invariant are discovered.

Second iteration.On the previous iteration we found a new dis-
junct I1 in the resource invariant associated with the lock`. This
means that whenever a thread acquires the lock`, it can get own-
ership of a piece of heap with this new shape. To account for this
in the analysis we now consider this possibility for allacquire(`)
commands in the program and perform the analysis on threads
starting from the resulting new states. Inthread1we obtain a new
states ∗ I1 at line 15. The analysis of the code in lines 15–20 in
this case gives us the states2 = ∃x.s ∗ h 7→{prev: x, next: n} ∗
n 7→{prev: h, next: x}∗x7→{prev: n, next: h}. at line 21. Again, the
part of the heap reachable fromh forms a new disjunct in the re-
source invariant. To ensure convergence we abstract it before sav-
ing: the abstraction procedure similar to the one presented in [9]
abstracts the heap that has two cellsn andx connected in a doubly-
linked list to a general doubly-linked list giving us a new dis-
junct in the resource invariant:I2 = ∃x, y.h 7→{prev: x, next: y} ∗
dll(y, h, h, x). A similar procedure forthread2again gives us the
stateq1 at line 36. No new disjuncts in resource invariants are dis-
covered while analyzing this thread.

Third iteration. We propagate the newly discovered disjunct
I2 of the resource invariant toacquire commands. The new
states ∗ I2 at line 15 gives rise to the states3 = ∃x, y.s ∗
h 7→{prev: x, next: n}∗n 7→{prev: h, next: y}∗dll(y, n, h, x) at line
21. Partitioning it into the part reachable fromh and the part
unreachable fromh and abstracting the latter gives us again the
resource invariantI2 and the states. Propagating the new dis-
junct in the resource invariant to line 28 yields the stateq2 =
∃x, y.q ∗h 7→{prev: x, next: y}∗dll(y, h, h, x) at line 36. Partition-
ing this state again does not result in new disjuncts in the resource
invariant being discovered.

No new disjuncts in resource invariants were discovered on
this iteration, hence, we have reached a fixed point. The resource
invariant for the lock̀ computed by the analysis isI0 ∨ I1 ∨ I2.
Furthermore, the program is memory-safe. 2

3. Thread-modular shape analyses
In this section we present a general framework for constructing
thread-modular shape analyses based on the inference of resource
invariants associated with each lock that describe the part of the
program state protected by the lock. Abstracting from particu-
lar domains used in shape analyses we formulate it in general
lattice-theoretic terms. We use the framework first in Section 4
to give a fixed-point characterization of resource invariants for
heap-manipulating programs and then in Section 5 to implement
a thread-modular shape analysis.

3.1 Preliminaries

We consider concurrent programs consisting of a bounded number
of threads that use a bounded number of non-aliased locks for
synchronization. Each thread is represented by its control-flow
graph (CFG). For any nodesv1 andv2 in a CFG there are three
types of edges that can connect them:

• (v1, C, v2), whereC is an element of a fixed setC of sequential
commands;

• (v1, acquire(`), v2) corresponding to acquiring the lock`;

• (v1, release(`), v2) corresponding to releasing the lock`.

Consider a program withm threadsP1, . . . , Pm in which Pi is
represented by a CFG with the set of nodesNi and the set of edges
Ei. LetL = {`1, . . . , `n} be the set of locks used in the program.
Let N =

Sm
i=1 Ni, E =

Sm
i=1 Ei, andstarti be the start node

of threadi. Without loss of generality we assume that there are no
edges in the CFG of the program leading to a start node. We call
a tuple(v1, . . . , vm), wherevi ∈ Ni a location. We now define a
collecting interleaving semantics for the program.

In this paper by adomainD we understand a join-semilattice
(D,v,

F
,⊥,>) with a bottom element⊥. We assume given a

domainD representing sets of states of the program and a set of
monotone concrete transfer functionsfC : D → D representing
the semantics of sequential commandsC ∈ C. The functionfC

maps pre-states to states obtained by executing the commandC
from a pre-state.

Programs in our semantics denote mappings from locations
and sets of locks held by each thread to elements of the do-
mainD. Formally, programs denote elements of the domainbD =
(N1 × . . . × Nm) → ((P(L))m → D) ordered by the point-
wise extension ofv. We call an element from(P(L))m a lockset
and say that a lockset(L1, . . . , Lm) is admissibleif the sets of

3

F (q) = q′ where

• q′(start1, . . . , startm, ∅, . . . , ∅) = pre;

• q′(v1, . . . , vm, L1, . . . , Lm) =
mF

j=1

F
(v0

j ,C,vj)∈E

gj
C(q(v1, . . . , v0

j , . . . , vm), L1, . . . , Lm), if (L1, . . . , Lm) is admissible, where

gj
C(s, L1, . . . , Lm) =

8>>><
>>>:

fC(s(L1, . . . , Lm)), if C is a sequential command;

s(L1, . . . , Lj \ {`i}, . . . , Lm) if C is acquire(`i) and`i ∈ Lj ;
s(L1, . . . , Lj ∪ {`i}, . . . , Lm) t s(L1, . . . , Lj , . . . , Lm) if C is release(`i) and`i 6∈ Lj ;
⊥, otherwise.

Figure 3. The functionalF defining the concrete collecting semantics for a multithreaded program

locks held by different threads are disjoint, i.e., for eachi and j
such thati 6= j it is the case thatLi ∩ Lj = ∅. For q ∈ bD,
q(v1, . . . , vm, L1, . . . , Lm), denotes the set of reachable states of
the program at the location(v1, . . . , vm) such that the lockset held
by threads is(L1, . . . , Lm). The reason for having a lockset as an
argument ofq is that locking does not have to be lexically scoped,
hence, reachable states at each location may have different locksets.

We assume a givenpre ∈ D representing the initial states of
the program. The semantics of the program is defined using the
functionalF : bD → bD that takes a functionq ∈ bD and maps it to
a functionq′ ∈ bD following the rules shown in Figure 3. Since the
transfer functionsfC are monotone, by Tarski’s fixed point theorem
the functionalF has least fixed pointlfp(F), which represents the
denotation of the program.

Consider the second equation in Figure 3. According to it, to
compute the state at any location (except for the initial one) we
consider all the edges in the CFG that can be taken by any single
thread that lead to this location (hence, the semantics is based on
interleaving) and take the join of the application of the functiong
for each of these edges (hence, the semantics is collecting) to the
state at the source node. Note that here we use partial application
of the functionq. The functiong defines the semantics of the
statement at each edge of the CFG. For a sequential command
it applies the transfer function for this command. Post-states of
acquire(`i) for a lockset in which the threadPj holds the lock̀ i

are the same as pre-states in which the threadPj does not hold the
lock `i. Hence, acquiring a lock by a thread corresponds to adding
this lock to the lockset of the thread. For theacquire(`i) command
the functiong filters out the pre-states in which the threadPj holds
the lock`i. Hence, a thread locking the same lock twice deadlocks.
Post-states ofrelease(`i) for a lockset in which the threadPj does
not hold the lock̀ i contain pre-states in which the threadPj does
not hold the lock̀ i as well as pre-states in which it does. Hence,
releasing a lock by a thread corresponds to removing it from the
lockset of the thread if it is there, and to a no-op if it is not there.
This semantics of releasing a lock corresponds to treating locks as
binary semaphores.

3.2 Abstract interpretation with state separation

As can be seen from the illustrative example in Section 2, in our
thread-modular shape analysis we have to split abstract heaps into
disjoint parts. For this to be possible the concrete and abstract do-
mains have to have a separated structure that allows for performing
such splittings. In this section we specialize the conventional notion
of abstract interpretation [7] for the case when the domains have
such a structure. In the subsequent sections we use this specializa-
tion as a foundation for designing thread-modular shape analyses.

DEFINITION 1 (Separation domain).A separation domain is a do-
main (D,v,

F
,⊥,>, e, ∗) equipped with an operation of sepa-

rate combination∗ : (D × D) → D such that(D,v, e, ∗) is a
partially-ordered commutative monoid, i.e.:

Values = {. . . ,−1, 0, 1, . . .} Locs = {1, 2, . . .}
Vars = {x, y, . . .} Stacks = Vars ⇀fin Values
Heaps = Locs ⇀fin Values States = (Stacks×Heaps) ∪ {>}
D = P(States)

Figure 4. Example of a separation domain

• ∗ is associative and commutative:

∀u, v, w ∈ D. u ∗ (v ∗ w) = (u ∗ v) ∗ w;

∀u, v ∈ D. u ∗ v = v ∗ u;

• ∗ has the unite: ∀u ∈ D. u ∗ e = u;
• ∗ is monotone:∀u1, u2, v ∈ D. u1 v u2 ⇒ u1 ∗ v v u2 ∗ v.

We use a slight variation on the following instance of a sepa-
ration domain in the further sections to design a thread-modular
shape analysis.

Example. Figure 4 defines a separation domainD for the con-
crete semantics of heap-manipulating programs [27]. A state of the
program is a stack-heap pair or a special error state>. A stack is
a finite partial function from variables to values, a heap is a finite
partial function from locations to values. The domain consists of
sets of states of the program. We identify all the sets of states con-
taining> and denote such elements of the domain simply with>.
The order in the domainD is subset inclusion with> being the
topmost element. This is essentially equivalent to using a topped
powerset. However, in the further sections the formulation we use
here allows us to simplify certain definitions.

In this paper we use the following notation for partial functions:
f(x)↓ means that the functionf is defined onx, f(x)↑ means
that the functionf is undefined onx, anddom(f) denotes the set
of arguments on which the functionf is defined. We denote with
f [x : y] the function that has the same value asf everywhere,
except forx, where it has the valuey (even iff(x)↑). f] g is the
union of the disjoint partial functionsf andg. It is undefined if
dom(f) ∩ dom(g) 6= ∅. We denote withf |d the function identical
to f except for its domain has been restricted to the setd.

We define the operation of separate combination on the domain
D in the following way: fors1, s2 ∈ States

s1 ∗ s2 = {(t1] t2, h1] h2) | (t1, h1) ∈ s1 ∧ (t2, h2) ∈ s2},
s1 ∗ > = > ∗ s2 = >.

The unit element with respect to this operation is a singleton set
containing a pair of everywhere undefined functions. A reader
familiar with separation logic [23] can immediately notice that
the definition of∗ we gave here corresponds to the model of the
separating conjunction from separation logic in the case when
variables are treated as resources [21]. 2

4

As can be seen from the example above, in this paper we use
the topmost element of a separation domain to indicate a potential
error. In this case the∗ operation should also satisfy the following
requirement:

∀u, v ∈ D. u ∗ v = > ⇒ u = > ∨ v = >. (1)

That is,∗ does not produce the error state unless one of its argu-
ments is the error state.

For a program analysis to benefit from the structure present
in a separation domain, transfer functions defining the concrete
semantics of sequential program statements have to behave in a
local way with respect to this structure. The following definition
formalizes this condition.

DEFINITION 2 (Local function).A functionf : D → D defined
over a separation domain(D,v,

F
,⊥,>, e, ∗) is local if for all

u, v ∈ D it is the case that

f(u ∗ v) v f(u) ∗ v. (2)

For the separation domains we consider in this paper, intuitively, if
f is the meaning of a commandC, this condition requires that if
executingC from a state inu ∗ v results in an errorf(u ∗ v) = >,
then executingC from a smaller state inu also produces an error:
> v f(u) ∗ v impliesf(u) = > by (1). Furthermore, if executing
C from a state inu does not produce an error, then executingC
from a larger state, inu ∗ v, has the same effect and leavesv
unchanged:f(u ∗ v) = f(u) ∗ v.

The construction of thread-modular shape analyses is possible
due the fact that concrete transfer functions for all standard heap-
manipulating commands are local as illustrated by the following
example.

Example. Consider the domainD from the previous example and
a transfer functionf : D → D corresponding to the command that
stores the value of the variabley at the address equal to the value
of the variablex, in C syntax “∗x = y”. We first define a function
f : States → D. Fort ∈ Stacks andh ∈ Heaps

f(t, h) =

(
(t, h[t(x) : t(y)]), if t(x)↓, t(y)↓, h(t(x))↓;
>, otherwise,

We letf(>) = > and lift f to D pointwise.
The functionf is local—when run on a piece of state it either

produces the same result as when run on the extended state or it
produces>. 2

Consider a concurrent programming language from the class de-
fined in Section 3.1. In Section 3.3 we show how, given an analysis
for the underlying sequential language, we can construct a thread-
modular analysis for the concurrent language. More precisely, we
assume given:

• a concrete separation domain(D,v,
F

,⊥,>, e, ∗) represent-
ing sets of concrete states of the program;

• an abstract separation domain(D],v,
F

,⊥,>, e],]) repre-
senting sets of abstract states of the program;

• a monotone concretization functionγ : D] → D;

• monotone concrete transfer functionsfC : D → D defining
the concrete semantics of sequential commandsC ∈ C;

• abstract transfer functionsf]
C : D] → D] defining the abstract

semantics of sequential commandsC ∈ C.

We assume further that:

• concrete transfer functionsfC are local;

F](Q, I) = (Q′, I′) where

• Q′(starti, ∅) = Prei(pre]);

• Q′(v, L) =
F

(v0,C,v)∈E

g]
C(Q(v0), L) for every nodev ∈ N , where

g]
C(s, L) =8>>><
>>>:

f]
C(s(L)), if C is a sequential command;

s(L \ {`i})] Ii, if C is acquire(`i) and`i ∈ L;

Locali(s(L ∪ {`i})) t s(L), if C is release(`i) and`i 6∈ L;

⊥, otherwise;

• I′i = Initi(pre]) t
F

(v0,release(`i),v)∈E,
{`i}∩L 6=∅

Framei(Q(v0, L))

for each lock̀ i.

Figure 5. The functionalF] defining a thread-modular analysis.
FunctionsLocali andFramei define a heuristic that decides how to
split the state upon releasing a lock.Prei and Initi decide how to
split the initial abstract statepre] between threads and locks.

• γ is a homomorphism between the monoids in the abstract and
concrete separation domains:

∀u, v ∈ D]. γ(u] v) = γ(u) ∗ γ(v); (3)

• abstract transfer functions over-approximate the concrete ones:

∀u ∈ D], C ∈ C. fC(γ(u)) v γ(f]
C(u)). (4)

Note that we use the same symbols for the order, bottom and top
elements, and the join operator for both domains when it does not
cause confusion. Note also that we do not require that the abstract
transfer functions be local or monotone.

3.3 Constructing thread-modular shape analyses

We now define a thread-modular analysis on a multithreaded pro-
gram. The main idea of the analysis is to infer the part of the
state protected by each lock—its resource invariant. Resource in-
variants are computed incrementally during the analysis, therefore,
for each lock`i the analysis maintains the current approximation
Ii ∈ D] of a corresponding resource invariant. In addition, for
every nodev in the CFG and every set of locksL the analysis
maintains the part of the stateQ(v, L) ∈ D] owned by the thread
at the nodev in the case when the set of locks held by the thread
is L—its local state. Formally, the analysis operates on the domainbD] = (N → (P(L) → D])) × (D])n ordered by the pointwise
extension of the abstract orderv.

We denote with]© the iterated version of]:]©k
i=1 xi =

x1] . . .] xk.
The thread-modular analysis is defined using the functional

F] : bD] → bD] that takes a tuple(Q, I) and produces a tuple
(Q′, I ′) as shown in Figure 5. The analysis receives as input an
abstract initial state of the programpre] ∈ D] such that

pre v γ(pre]) (5)

and is parameterized with the following functions:

• Locali : D] → D] andFramei : D] → D] for eachi = 1..n
such that for alls ∈ D]

γ(s) v γ(Locali(s)] Framei(s)); (6)

5

• Prei : D] → D] for eachi = 1..m andIniti : D] → D] for
eachi = 1..n such that for alls ∈ D]

γ(s) v γ

��
m

]©
i=1

Prei(s)

�
]

�
n

]©
i=1

Initi(s)

��
. (7)

Prei andIniti determine the initial splitting of abstract statepre]

between threads and locks.Prei and Initi map the abstract initial
state of the programpre] to the abstract initial state of threadi,
respectively, the initial approximation of the resource invariantIi.
The condition (7) ensures that, when recombined, the results are an
over-approximation of the abstract initial state.

The interesting part of the analysis concerns the treatment of
acquiring and releasing locks. When a thread acquires a lock`i,
it obtains the current approximation of the corresponding resource
invariant—the current approximation of the resource invariant is]-
conjoined with the current local state of the thread to yield a new
local state.

When a thread releases the lock`i, its current local state is
partitioned into two parts, one of which returns to the resource
invariant and the other one stays with the thread. The functions
Locali andFramei determine this splitting. The functionLocali
determines the part of the state that becomes the local state of the
thread and the functionFramei the part that goes to the resource
invariant. The condition (6) ensures that the combination of the
parts of the splitting over-approximates the given abstract state.
Note that the treatment of locksets in processingacquire or release
commands in Figure 5 mimics the one in the concrete semantics
(Figure 3).

A computation of a fixed point of the functionalF] would an-
alyze each thread accumulating possible values of resource invari-
ants during the analysis. Each time a new possible value of a re-
source invariant associated with a lock is discovered, it would have
to be propagated to everyacquire command for the lock. Hence,
each thread is analyzed repeatedly, but separately, without explor-
ing the set of interleavings. In this sense the analysis defined byF]

is thread-modular. Note also that after the analysis splits the state
at areleasecommand, it loses correlations between the parts of the
state that become local states of the thread and the parts that go to
the resource invariant. This loss of precision is similar to the one
observed in thread-modular model checking [11].

We are now in a position to state and prove the soundness of
the analysis defined by the functionalF]. The following theorem
says that reachable states at the location(v1, . . . , vm) such that the
lockset held by threads is(L1, . . . , Lm) are over-approximated by
the combination of the local states of all threads along with resource
invariants associated with the locks that are not in the lockset. The
conditions listed at the end of Section 3.2 pinpoint the sufficient
requirements that the underlying sequential analysis has to satisfy
for the thread-modular analysis to be sound and are used in the
proof of the theorem.

THEOREM 1 (Soundness).Let q be least fixed point of the func-
tional F defined in Figure 3 and(Q, I) be a fixed point of the func-
tional F] defined in Figure 5. Then for each location(v1, . . . , vm)
and admissible lockset(L1, . . . , Lm)

q(v1, . . . , vm, L1, . . . , Ln) v γ

��
m

]©
i=1

Q(vi, Li)

�
]

�
]©

`i 6∈L
Ii

��
whereL = L1 ∪ . . . ∪ Lm.

The proof appears in Appendix A.
Note that although we have assumed a fixed number of threads,

from the definition of the functionalF] it follows that the results of
the analysis are sound for an unbounded number of copies of these
threads provided they have the same initial states as the original

V ::= x, y, . . . variables
E ::= null | V expressions
G ::= E == E | E != E branch guards
C ::= V = E | V = V �next sequential commands

| V �next= E
| V = new | deleteV
| assume(G)

Figure 6. Sequential commands for a heap-manipulating concur-
rent programming language

ones. Formally, if we add an extra copy of a threadPi into the
program and change the concrete and the abstract initial states so
that the condition (7) is still satisfied (which corresponds to adding
an extra piece of state to the initial state of the program to form
a precondition for a newly added thread), then the results of the
analysis for the new program with theQ for the new thread equal
to theQ for Pi still form a fixed point of the new functionalF]

and, hence, over-approximate the concrete semantics.
Similar versions of the specialization of abstract interpretation

presented in Section 3.2 were developed independently and can
also be used as a basis for scaling up other static analysis algo-
rithms even for programs without multithreading and dynamically
allocated memory (see [13] for more information). For example,
they are applicable in interprocedural analysis to split off the (ab-
stract) state of the called procedure from the abstract state of the
caller [24, 12].

4. Resource invariants as least fixed points
In this section we show that if the borders of the part of the
heap protected by a lock are specified, then the resource invariant
describing this part can be defined as least fixed point of a first-
order equation. For programs that have resource invariants from the
class we define here the precision of our thread-modular analysis
depends only on the precision of the underlying (sequential) shape
analysis.

To show how to design thread-modular shape analyses we ab-
stract from the particular shape domain used and construct an ide-
alistic shape analysis that operates on concrete states. We do this
by instantiating the framework of Section 3.3 with the same con-
crete and abstract domains. In Section 5 this instantiation serves
as a template for designing thread-modular shape analyses. The
instantiation provides a fixed-point characterization of a class of
resource invariants and can be seen as defining a non-standard con-
crete semantics. Theorem 1 ensures its adequacy with respect to the
standard collecting interleaving semantics.

4.1 Programming language and concrete semantics

Programming language. We consider a concurrent heap-
manipulating programming language from the class of concurrent
CFG-based languages defined in Section 3.1 with sequential com-
mands shown in Figure 6. To simplify presentation we assume that
each structure stored in the heap has only one fieldnext. The devel-
opment carried out in this section generalizes easily to the case of
structures with multiple fields. The meaning of commands is stan-
dard.assume(G) acts as a filter on the state space of programs—G
is assumed to be true afterassumeis executed. It is used to replace
conditional expressions inwhile andif statements while translating
programs to CFGs.

Consider a program in the language introduced above consisting
of threadsP1, . . . , Pm (represented by their CFGs) with locks
`1, . . . , `n and a preconditionpre.

The domain of states.We now define a concrete semantics and
a corresponding concrete separation domain(D,v,

F
,⊥,>, e, ∗)

6

Values = {. . . ,−1, 0, 1, . . .} Locs = {1, 2, . . .}
Heaps = Locs ⇀fin Values Perms = (0, 1]
Stacks = Vars ⇀fin (Values× Perms) Vars = {x, y, . . .}
States = (Stacks×Heaps) ∪ {>} D = P(States)

Figure 7. The domainD of the concrete semantics

for this language. As was previously noted, in our fixed-point char-
acterization of resource invariants for heap-manipulating programs,
we assume that the borders between parts of the heap owned by dif-
ferent threads or protected by different locks are stable, i.e., pointed
to by fixed stack variables. We thus have to account for the fact that
local state of several threads and resource invariants of several locks
may reference the same variable. Supposing that there arek such
locks and threads, we handle this case by giving to each thread and
lock a fractional permission1/k for this variable [2]. The permis-
sion shows “how much” of this variable is owned by the thread or
protected by the lock. The idea is that a thread having a permission
less than1 for a variable can read it; a thread can write to a variable
only if the permission associated with it in its local state is equal
to 1, i.e., only if it gathers the permissions from all the other locks
that own this variable by acquiring them. Thus, as our concrete do-
main we chose an extension of the example of a separation domain
presented in Section 3.2 with fractional permissions for variables.

The domainD is defined in Figure 7. As before, we identify
all the sets of states fromStates containing> and denote such
elements of the domain simply with>. The order in the domain
is subset inclusion with> being the topmost element, the join
operation is set union, and the bottom element is the empty set.

We proceed to define an operation of separate combination∗
on the domain. Informally,∗ adds up permissions for variables and
computes the disjoint combination of heaps. It corresponds to the
model of the separating conjunction from separation logic in the
case when variables are treated as resources with permissions.

For t ∈ Stacks let functionsValt andPermt be selectors for
values, respectively, permissions, of variables on the stack: for
all x ∈ Vars, (Valt(x), Permt(x)) = t(x) and, additionally,
Permt(x) = 0 if t(x)↑.

We define the combinationt1 ∗ t2 of stackst1, t2 ∈ Stacks as
follows: if ∀x ∈ Vars. Permt1(x)+Permt2(x) ≤ 1∧(Valt1(x)↓∧
Valt2(x)↓ ⇒ Valt1(x) = Valt2(x)), then

(t1 ∗ t2)(x) =8><>:
(Valt1(x), Permt1(x) + Permt2(x)), if Valt1(x)↓;
(Valt2(x), Permt1(x) + Permt2(x)), if Valt2(x)↓;
undefined, otherwise,

andt1 ∗ t2 is undefined otherwise.
We define the combinationh1 ∗ h2 of heapsh1, h2 ∈ Heaps in

the following way:

h1 ∗ h2 =

(
h1] h2, if dom(h1) ∩ dom(h2) = ∅;
undefined, otherwise.

Finally, for t1, t2 ∈ Stacks andh1, h2 ∈ Heaps we let(t1, h1) ∗
(t2, h2) = (t1 ∗ t2, h1 ∗h2), for s ∈ D we let>∗ s = >∗ s = >,
and we lift∗ to D pointwise.

The unit elemente of ∗ is the singleton set containing a pair of
an empty heap and an empty stack, both represented by everywhere
undefined functions.

Transfer functions.We define the concrete transfer functions
fC : D → D for primitive commands using the transition relation
; shown in Figure 8. We letfC(t, h) = {s | C, t, h ; s},
fC(>) = >, and lift fC to D pointwise. It is not difficult to

x = y, t, h ; t[x : (Valt(y), 1)], h if Permt(x) = 1, t(y)↓
x = null, t, h ; t[x : (0, 1)], h if Permt(x) = 1
x = y�next, t, h ; t[x : h(Valt(y))], h if Permt(x) = 1,

t(y)↓ , h(Valt(y))↓
x�next= y, t, h ; t, h[Valt(x) : Valt(y)] if t(x)↓ , t(y)↓,

h(Valt(x))↓
x�next= null, t, h ; t, h[Valt(x) : 0] if t(x)↓ , h(Valt(x))↓
x = new, t, h ; t[x : a], h[a : e] if Permt(x) = 1,

a ∈ Locs \ dom(h),
e ∈ Values

deletex, t, h[Valt(x) : e] ; t, h if t(x)↓ , e ∈ Values
assume(G), t, h ; t, h if JGKt↓ , JGKt = true
assume(G), t, h 6; if JGKt↓ , JGKt = false
C, t, h ; > otherwise

Figure 8. Transition relation for primitive commands.JGKt ∈
{true, false} is the valuation of the guardG over the stackt (which
is undefined ift is undefined for a variable used inG). Here 6;
denotes that the command does not fault, but gets stuck.

show that for each primitive commandC from Figure 6 the transfer
functionfC is monotone and local.

4.2 Fixed-point characterization

In the setup of Section 3.3 we let both the abstract separation
domainD] and the concreteD be equal to the domain defined
in Section 4.1 and the abstract transfer functions be equal to the
concrete ones.γ is the identity function. We also letpre] = pre.
All the conditions listed at the end of Section 3.2 are satisfied.

We would like to characterize resource invariants as least fixed
points of a functional from the class defined in Figure 5. To do this
we have to provide functionsLocali andFramei (i = 1..n) for
each lock,Prei (i = 1..m) for each thread, andIniti (i = 1..n) for
each lock.

To this end we assume that for each lock`i we are given two sets
of program variables, which specify the borders of the part of the
heap protected by the lock—the set ofentry pointsEntry(`i) and
the set ofexit pointsExit(`i). The part of the heap protected by the
lock is defined as everything that is reachable from entry points up
to exit points. Therefore, exit points are pointers that lead to parts
of the heap owned by others. In addition, for each threadPi we
assume given the setOwns(Pi) of program variables that it owns.
These are variables that the thread is allowed to access even without
holding any locks. We defineOwns(`i) = Entry(`i) ∪ Exit(`i).

First, we define howLocali and Framei partition the stack.
To this end we define an auxiliary function that describes the
ownership partitioning of the stack. For a thread or lockP , Perm0

P

defines via permissions the part of the stack owned byP : for each
x ∈ Vars

Perm0
P (x) =

(
1/|{P ′ | x ∈ Owns(P ′)}|, if x ∈ Owns(P);

undefined, otherwise.

For a stackt ∈ Stacks if ∀x ∈ Vars. t(x)↓ ⇒ Perm0
`i

(x) ≤
Permt(x), then let

Locali(t) = λx.(Valt(x), Permt(x)− Perm0
`i

(x)),

Framei(t) = λx.(Valt(x), Perm0
`i

(x)),

otherwise letLocali(t) = Framei(t) = >.
We now define howLocali and Framei partition the heap.

Framei takes the part of the heap reachable from entry points up
to exit points. The intuition is that modifying pointers to a heap cell
such that it moves into this part of the heap means that it becomes
protected by the corresponding lock and a part of its resource
invariant (recall that in the analysisFramei computes the part of

7

the heap that goes into the resource invariant). The rest of the heap
becomes the result ofLocali.

For t ∈ Stacks, h ∈ Heaps, and a lock`i let d(`i, t, h)
be the smallest setd such that (Valt(Entry(`i)) ∪ (h(d) \
Valt(Exit(`i))))∩Locs ⊆ d. d(`i, t, h) defines the part of the heap
reachable from the entry points of the lock`i up to exit points as-
sociated with this lock. We now let fort ∈ Stacks andh ∈ Heaps

Locali(t, h) = (Locali(t), h|dom(h)\d(`i,t,h)),

Framei(t, h) = (Framei(t), h|d(`i,t,h)).

Here we assume that(>, h) = >. We let Locali(>) =
Framei(>) = > and lift Locali andFramei to D pointwise.

We proceed to determine the initial splitting of the heap among
threads and locks. This is done in the same spirit as splitting
the heap atrelease commands. For each threadPi we define
Entry(Pi) = Owns(Pi), Exit(Pi) = {Owns(Pk) | 1 ≤ i ≤
m ∧ i 6= k} ∪ {Entry(`i) | 1 ≤ i ≤ n}. That is, for a thread
Pi we consider the entry points of its initial states to be the vari-
ables owned by the thread and exit points to be the variables owned
by other threads and entry points of locks. For a threadPi let
d(Pi, t, h) be defined as before, but with newEntry andExit. For
a stackt and a heaph we let

Prei(t, h) = (λx.(Valt(x), Perm0
Pi

(x)), h|d(Pi,t,h)),

Initi(t, h) = (λx.(Valt(x), Perm0
`i

(x)), h|d(`i,t,h)).

Fors ∈ D we define

Prei(s) = {Prei(t, h) | (t, h) ∈ s}, Prei(>) = >,

Initi(s) = {Initi(t, h) | (t, h) ∈ s}, Initi(>) = >,

if for each(t, h) ∈ s

(]m
i=1dom(Prei(t, h)))] (]n

i=1dom(Initi(t, h))) = dom(h),

wheredom(t, h) = dom(h) andPrei(s) = Initi(s) = > oth-
erwise. The latter case corresponds to the situation when we are
unable to split the initial states using the definitions ofEntry and
Exit above.

Since the transfer functionsfC and functionsLocali, Framei

Prei, andIniti are monotone, by Tarski’s fixed point theorem the
functional F] defined in Figure 5 given the instantiations above
always has least fixed point(Q, I). It is not difficult to show
that Locali and Framei defined above satisfy (6) andPrei and
Initi defined above satisfy (7). Hence, from Theorem 1 it follows
that (Q, I) over-approximates the concrete semantics (as defined
in Figure 3) and provides a valid fixed-point characterization of
resource invariants for a class of heap-manipulating programs.

Example. The program in Figure 9 is adapted from [19]. Two
threads—a producer and a consumer—use fine-grained synchro-
nization to access an unbounded buffer represented by a singly-
linked list. Variablesfirst and last point to the first, respectively,
last element of the list. Variablex is a local variable of the con-
sumer,y of the producer. Thelast element is a dummy node. The
producer adds a portion to the buffer by placing that portion in the
datafield of last, then allocates a new cell, and links that cell into
the list making it thelast (and dummy). Removing a portion re-
sults in a value being read from thedata field of the first node,
disposing this node, and movingfirst along the list by one. When
the list is of length onelast and first are equal, and this corre-
sponds to an empty buffer; it is in this case that synchronization
is necessary. In this exampleEntry(`) = {first}, Exit(`) = {last},
Owns(producer) = {last, y}, andOwns(consumer) = {first, x}.
Figure 10 defines a fixed point of the functional introduced above.
We use separation logic formulae to denote elements of the do-
mainD (in fact, the formulae in Figure 10 represent an outline of
a proof in concurrent separation logic). The only deviation from

the standard syntax and semantics [23] is that we treat variables as
resources [21] (as required by the semantics in Section 4.1). The
syntax of formulae is the same as in Figure 2 except for the follow-
ing:

• Each formula is prefixed with an expression of the form
p1x1, . . . , pkxk describing the stack, wherepi is a number
in (0, 1] representing the permission for the variablexi and
x1, . . . , xk is the list of free variables in the formula.

• We useE1 7→{next: E2} instead ofE 7→{prev: E, next: E}.
• We use a predicatels(E1, E2) for singly-linked lists rather than

a predicate for doubly-linked lists.

We contract1x to simply x, E1 7→{next: E2} to E1 7→E2, and
use x7→ instead ofx7→x′ when the value ofx′ is irrelevant.
ls(E1, E2) is the least predicate such thatls(E1, E2) ⇔ ∃x.(E1 =
E2 ∧ emp) ∨ (E1 6= E2 ∧ E1 7→x ∗ ls(x, E2)) and denotes all of
the states in which the heap has the shape of an acyclic (possibly
empty) singly-linked list, with the head nodeE1 and the value of
thenextfield of the last nodeE2. Note thatE2 must be a dangling
pointer in a heap defined byls(E1, E2). The adjustments to the
semantics of formulae for handling variables as resources are as
in [21]. The formula for the linev corresponds to the value of
Q(v, L), whereL is the set of locks held atv by the thread to
which v belongs (in this example for each CFG nodev the setL
can be determined syntactically). The resource invariant associated
with the lock` is 1

2
first, 1

2
last
 ls(first, last). We omitted formulae

for some program lines to conserve space. 2

5. Instantiating the framework
By instantiating the framework for thread-modular analyses pre-
sented in Section 3.3 with the concrete domain defined in Sec-
tion 4.1, and abstract domain and transfer functions from differ-
ent sequential shape analyses we can get different thread-modular
shape analyses. In this section we present an instantiation of the
framework on which our implementation is based and outline two
other instantiations. Their design follows the fixed-point charac-
terization of resource invariants presented in Section 4.2, i.e., the
analyses split the heap on releasing a lock by computing (an ap-
proximation of) reachability between entry and exit points. We first
note an important property of thread-modular shape analyses ob-
tained by instantiating the framework with the concrete domain de-
fined in Section 4.1—they detect data races, i.e., having a data race
in the program results in the analysis signaling a possible bug.

5.1 Data race freedom

Suppose we are given a thread-modular shape analysis obtained
from an instantiation of the framework of Section 3.3 in which the
concrete separation domainD is equal to the domain defined in
Section 4.1. Thus, we assume given an abstract separation domain
D], a concretization functionγ, abstract transfer functionsf]

C ,
and functionsLocal]i , Frame]

i , Pre]
i , and Init]

i . We fix a program
in the programming language introduced in Section 4.1 and let
q be least fixed point of the functionalF (Figure 3) that defines
the concrete semantics of the program. We prove that the success
of the thread-modular shape analysis on the program implies that
the program has no data races (both on stack variables and on
heap cells). The analysis succeeds if the fixed point(Q], I]) of the
functionalF] (Figure 5) that defines its result is such that for every
nodev and every set of locksL it is the case thatQ](v, L) < >
and for all locks`i it is the case thatI]

i < >. We denote this
with (Q], I]) < >. In other words, a possible error found by the
analysis is denoted by the topmost element in the abstract domain.
This requires us to put an additional constraint on the abstract

8

1 struct ListEntry
2 {
3 ListEntry* next;
4 int data;
5 };
6
7 Lock`;
8 ListEntry* x, y, first, last;

9 consumer() {
10 while (true) {
11 x = first;
12 while (true) {
13 acquire(`);
14 if (first != last) {
15 first = first�next;
16 release(`);
17 break;
18 } else{
19 release(`);
20 }
21 }
22 consume(x�data);
23 deletex;
24 }
25 }

26 producer() {
27 while (true) {
28 last�data= produce();
29 y = newListEntry;
30 last�next= y;
31 acquire(`);
32 last = y;
33 release(`);
34 }
35 }

36 main() {
37 last = newListEntry;
38 first = last;
39 startThread(&consumer);
40 startThread(&producer);
41 }

Figure 9. Example program

Line Local state

10 x, 1
2

first
 emp

11 x, 1
2

first
 emp

13 x, 1
2

first
 x = first∧ emp

14 x, first, 1
2

last
 x = first∧ ls(first, last)
16 x, first, 1

2
last
 x7→first ∗ ls(first, last)

17 x, 1
2

first
 x 7→first
19 x, first, 1

2
last
 first = last∧ x = first∧ ls(first, last)

20 x, 1
2

first
 x = first∧ emp

21 x, 1
2

first
 x = first∧ emp

23 x, 1
2

first
 x 7→first
24 x, 1

2
first
 emp

28 y, 1
2

last
 last7→
30 y, 1

2
last
 last7→ ∗ y 7→

31 y, 1
2

last
 last7→y ∗ y 7→
32 y, last, 1

2
first
 ls(first, last) ∗ last7→y ∗ y 7→

33 y, last, 1
2

first
 y = last∧ (ls(first, last) ∗ last7→)

34 y, 1
2

last
 last7→
37 x, y, first, last
 emp
39 x, y, first, last
 first = last∧ last7→

Figure 10. The fixed point defined by the fixed-point characteri-
zation for the program in Figure 9. Results for some lines of the
program are elided.

domain: we require that

∀s ∈ D]. γ(s) = > ⇒ s = >. (8)

Let accesses(C, t, h), respectively,writes(C, t, h) be the set of
variables and locations that the primitive sequential commandC
may access (i.e., read, write or dispose), respectively, write to or
dispose, when run from the state(t, h).

DEFINITION 3 (Interfering commands).Primitive se-
quential commands C1 and C2 interfere with each
other when executed from the state(t, h), denoted with
C1 ./(t,h) C2, if accesses(C1, t, h) ∩ writes(C2, t, h) 6= ∅
or writes(C1, t, h) ∩ accesses(C2, t, h) 6= ∅.

Given this formulation of interference, the usual notion of data
races is formulated as follows.

DEFINITION 4 (Data race).The program has a data race if for
some location(v1, . . . , vm), admissible lockset(L1, . . . , Lm), and
state(t, h) ∈ q(v1, . . . , vm, L1, . . . , Lm) < > there exist CFG
edges(v1, C1, v

′
1) ∈ Ei and (v2, C1, v

′
2) ∈ Ej (i 6= j) labeled

with sequential commandsC1 and C2 such thatC1, t, h 6; >,
C2, t, h 6; > andC1 ./(t,h) C2.

THEOREM 2 (Data race freedom).Suppose that(Q], I]) is a fixed
point of the functionalF] obtained from an instantiation of the
framework from Section 3.3 with the concrete domain from Sec-
tion 4.1 and a concretization functionγ satisfying (8). If(Q], I]) <

>, then the program has no data races.

The proof appears in Appendix B.

5.2 Thread-modular shape analysis with separated heap
abstractions

We define a thread-modular analysis based on a sequential shape
analysis in which abstract states are represented by separation logic
formulae. The underlying sequential analysis is specialized for
handling doubly-linked lists and is similar to the one of [9].

The abstract domainD] is the domain of sets of separation logic
formulae from the subset defined in Section 2 (Figure 2) and ex-
tended to handle variables as resources as described at the end of
Section 4.2. A special element> ∈ D] denotes an error. The order
on the domain is subset inclusion with> being the topmost ele-
ment. The concrete domain is the domain from Section 4.1 mod-
ified in the obvious way to account for multiple field selectors in
structures. The concretization function is defined following the se-
mantics of separation logic formulae. The operation of separate
combination] on the abstract domain is just separating conjunction
∗ lifted to the sets of formulae. Transfer functions are similar to
those presented in [9, 12], but adapted for handling doubly-linked
lists rather than singly-linked lists. FunctionsLocal]i , Frame]

i , Pre]
i ,

andInit]
i mirror their concrete counterparts defined in Section 4.2.

Their implementation is similar to the implementation of the oper-
ations used in interprocedural shape analysis with an abstract rep-
resentation based on separation logic [12] to split the abstract heap
at a procedure call (functionslocal and frame in [12]). The dif-
ference with respect to the concrete operations is that instead of
computing reachability precisely in the concrete, we compute its
approximation—reachability in the formula as defined in [12]. The
analysis performs the sequential shape analysis of the initialization
code to obtain an abstract preconditionpre] of the program. The
reader may now revisit the example in Section 2 to get the idea

9

of how the analysis works. Note that to simplify presentation we
elided the discussion of treating variables as resources in the analy-
sis while presenting the example.

We note that in situations when all of the heap cells in the
data structure protected by a lock are reachable from some set of
program variables, the sets of exit points are empty and the set of
program variables protected by a lock forms a reasonable guess
for the set of entry points associated with the lock. The set of
entry points can then be inferred using, e.g., tools (both static and
dynamic) for analyzing correlations between locks and variables
that determine the set of locks that are held consistently each time
a variable is accessed [22, 25, 5].

5.3 Other instantiations

Distefano et al. [9] present a shape analysis for singly-linked lists in
which abstract states are represented by separation logic formulae.
The construction of a thread-modular shape analysis that uses [9]
as the underlying sequential analysis is done in the same way as de-
scribed in Section 5.2. Unlike the domain presented in Section 5.2,
the domain from [9] is finite provided the number of program vari-
ables is bounded. Hence, the corresponding thread-modular analy-
sis is always guaranteed to terminate, which is not the case for the
analysis presented in Section 5.2.

Lev-Ami et al. [16] present a shape analysis that handles a wider
range of data structures including singly- and doubly-linked lists
and binary trees. Abstract states in the analysis are represented by
shape graphs. To define functionsLocal]i , Frame]

i , Pre]
i , andInit]

i

for this abstract domain we have to be able to split shape graphs
creating dangling pointers across splittings. The abstract represen-
tation of [16] does not allow dangling pointers, but can be ex-
tended [15] so that it is suitable for us in a restricted case in which
the set of exit points for each lock is empty and each stack vari-
able is owned by only one process or resource (i.e., setsEntry and
Owns are pairwise disjoint). More precisely, as the concrete sepa-
ration domain we again take the domain from Section 4.1. The ab-
stract domain is represented by a topped powerset of shape graphs
extended to allow specialunusable pointers. These are pointers
such that no information about them is preserved by the analy-
sis and dereferencing them results in an error. Adding them pre-
serves the finiteness of the domain. The operation of separate com-
bination is the union of shape graphs. FunctionsLocal]i , Frame]

i ,
Pre]

i , andInit]
i are defined following their concrete counterparts in

Section 4.2 using reachability in shape graphs. Since we assume
empty sets of exit points, there may only be two kinds of dangling
pointers: dangling pointers resulting from thedeletecommand and
pointers from the part of the heap computed byFrame]

i to the part
of the heap computed byLocal]i . Both of these kinds of pointers
can be modeled in the abstract representation by unusable pointers.

6. Implementation and experimental results
We have implemented the thread-modular shape analysis described
in Section 5.2 in a prototype tool and applied it to multithreaded
heap-manipulating code from Windows device drivers. The results
from our experiments are presented in Figure 11. Tests were per-
formed on a 3.4GHz Pentium 4 PC. In all of our experiments the
maximum memory usage by the tool was 22MB. The sizes of ac-
tual C code (without comments, irrelevant definitions, etc.) that was
analyzed for examples from Figure 11 ranged from 50 to 300 LOC.

Each program we attempted to verify consisted of 2-6 threads
representing concurrently executing dispatch routines of device
drivers that performed different operations on doubly-linked lists.
The precondition of each thread was just the empty heap. Hence,
according to the note at the end of Section 3.3, the results of
our analysis are also valid for an unbounded number of copies of

Threads 3 6 9 12 15 18
Time (sec) 11.4 27.7 50.3 79.9 118.7 170.7

Figure 12. Results of testing the tool on programs with varying
number of threads

threads that are present in the code. In all cases we let the sets of
exit points for all locks be empty. The tool found bugs in three
programs and proved that the rest of programs are memory-safe, do
not leak memory and are data race free. In each case the analysis
converged within a few iterations. We have not encountered any
false bugs in our experiments. The bugs found by the analysis
were due to accesses to data structures not protected by locks and
would manifest themselves as dereferencing a dangling pointer or
a memory leak.

To speed up convergence to a fixed point in our implementation
we use a non-standard widening operator [8, 4] that eliminates re-
dundant formulae from sets of formulae representing abstract states
using a prover for entailment between separation logic formulae
similar to the one described in [1]. The proof of Theorem 1 can be
adjusted to ensure the soundness of the analysis using the widen-
ing operator. Due to the use of the non-standard widening, in most
cases the final number of states per program point was 1 or 2.

To assess the scalability of our shape analysis we took program
2 and duplicated the code of threads in it knowing that the analyzer
will not realize that the threads are duplicates. The results are
presented in Figure 12. As can be seen from the figure, we do not
observe the analysis being exponential in the number of threads.

7. Related work
The shape analysis for concurrent programs presented in [26] han-
dles unbounded numbers of locks (in the heap) and threads but re-
lies on abstracting program interleaving and thus does not scale
well. A number of analyses have been developed to detect races in
multithreaded programs, both automatic (e.g., [25, 5, 18, 22, 17])
and requiring user annotations (e.g., [10, 3, 14]). To the best of our
knowledge all of the automatic tools are either overly imprecise or
unsound in the presence of deep heap update. The analyses that
require annotations, which are usually based on type systems, pre-
clude ownership transfer; besides, the annotations required by them
are often too heavyweight. In contrast, our analysis handles own-
ership transfer and requires lightweight annotations that can be in-
ferred by existing automatic tools. Some of the techniques for race
detection (including [22, 25, 5]) provide information about which
locks protect which variables. Such techniques are complimentary
to ours—they can be used to discover entry points for resource in-
variants needed by our analysis.

Our method for constructing thread-modular shape analyses is
inspired by concurrent separation logic [19], which adapted the
idea of resource invariants to heap-manipulating programs. Here
we use this idea in the context of program analysis. However, it is
important to note a difference between the approach we are taking
in this paper and the approach that is taken in concurrent separation
logic. In concurrent separation logic resource invariants have to be
precise—informally, they have to unambiguously pick out an area
of heap; see [19] for a formal definition. The reason is that having
imprecise resource invariants leads to the possibility of choosing
different splittings of the heap atreleasecommands in a proof,
which makes the conjunction rule of Hoare logic unsound. Here
the determinism of heap splittings atreleasecommands is enforced
by using deterministic functionsLocali and Framei. Hence, in
our analysis we can compute resource invariants without worrying
about their precision and still keep the analysis sound.

10

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (sec) 2.2 11.7 3.4 4.2 3.5 6.6 8.6 13.3 6.9 6.6 27.2 28.6 9.7 5.3 3.4 5.3
Bug found No No No No No No No No No No No No No Yes Yes Yes

Figure 11. Results of the application of the tool to multithreaded code from Windows device drivers

Previous work [6] presented a fixed-point characterization of re-
source invariants for integer programs with semaphores in the case
when programs have no shared variables. This paper is the first, to
the best of our knowledge, to present a fixed-point characterization
of a class of resource invariants for heap-manipulating programs.

8. Conclusion
We have described a new analysis designed to eliminate the consid-
eration of interleavings for programs with deep heap update while
preserving soundness and precision. Our analysis is able to estab-
lish that the program is memory-safe (i.e., it does not dereference
heap cells that are not allocated), does not leak memory and does
not have data races (including races on heap cells). The analysis
handles low-level language features including non-lexically scoped
and nested locking, and memory disposal. Our solution works par-
ticularly well in situations in which all of the heap cells in the data
structure protected by a lock are reachable from some set of pro-
gram variables as it is the case, e.g., in systems code.

Acknowledgements. We would like to thank Cristiano Calcagno,
Dino Distefano, Peter O’Hearn, Tal Lev-Ami, Stephen Magill, Ro-
man Manevich, Matthew Parkinson, Andreas Podelski, Zvonimir
Rakamaric, Ganesan Ramalingam, John Reynolds, Noam Rinetzky,
Viktor Vafeiadis, Hongseok Yang, Jian Zhang, and the anonymous
reviewers for comments and discussions that helped to improve the
paper.

References
[1] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with

separation logic. InAPLAS’05: Asian Symposium on Programming
Languages and Systems, volume 3780 ofLNCS, pages 52–68.
Springer, 2005.

[2] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. Parkinson. Per-
mission accounting in separation logic. InPOPL’05: Principles of
Programming Languages, pages 259–270. ACM Press, 2005.

[3] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA’02: Object-Oriented Programming, Systems, Languages,
and Applications, pages 211–230. ACM Press, 2002.

[4] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic.
In SAS’06: Static Analysis Simposium, volume 4134 ofLNCS, pages
182–203. Springer, 2006.

[5] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. InPLDI’02: Programming Languages
Design and Implementation, pages 258–269. ACM Press, 2002.

[6] E. Clarke. Synthesis of resource invariants for concurrent programs.
ACM Trans. Program. Lang. Syst., 2(3):338–358, 1980.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. InPOPL’77: Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

[8] P. Cousot and R. Cousot. Abstract interpretation frameworks.Journal
of Logic and Computation, 2(4):511–547, 1992.

[9] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. InTACAS’06: Tools and Algorithms for

Analysis and Construction of Systems, volume 3920 ofLNCS, pages
287–302. Springer, 2006.

[10] C. Flanagan and S. N. Freund. Type-based race detection for Java.
In PLDI’00: Programming Languages Design and Implementation,
pages 219–232. ACM Press, 2000.

[11] C. Flanagan and S. Qadeer. Thread-modular model checking. In
SPIN’03: Workshop on Model Checking Software, volume 2648 of
LNCS, pages 213–224. Springer, 2003.

[12] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape
analysis with separated heap abstractions. InSAS’06: Static Analysis
Symposium, volume 4134 ofLNCS, pages 240–260. Springer, 2006.

[13] A. Gotsman, N. Rinetzky, J. Berdine, B. Cook, D. Distefano, P. W.
O’Hearn, M. Sagiv, and H. Yang. Abstract interpretation with state
separation. In preparation, 2007.

[14] D. Grossman. Type-safe multithreading in Cyclone. InTLDI’03:
Types in Languages Design and Implementation, pages 13–25. ACM
Press, 2003.

[15] T. Lev-Ami. Personal communication. 2006.

[16] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape
analysis with fast and precise transformers. InCAV’06: Computer
Aided Verification, volume 4144 ofLNCS, pages 547–561. Springer,
2006.

[17] M. Naik and A. Aiken. Conditional must not aliasing for static race
detection. InPOPL’07: Principles of Programming Languages, pages
327–338. ACM Press, 2007.

[18] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. InPLDI’06: Programming Languages Design and
Implementation, pages 308–319. ACM Press, 2006.

[19] P. W. O’Hearn. Resources, concurrency and local reasoning. In
CONCUR’04: International Conference on Concurrency Theory,
volume 3170 ofLNCS, pages 49–67. Springer, 2004.

[20] S. Owicki and D. Gries. Verifying properties of parallel programs:
An axiomatic approach.Commun. ACM, 19(5):279–284, 1976.

[21] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource
in Hoare logics. InLICS’06: Logic in Computer Science, pages
137–146. IEEE Press, 2006.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive
correlation analysis for race detection. InPLDI’06: Programming
Languages Design and Implementation, pages 320–331. ACM Press,
2006.

[23] J. Reynolds. Separation logic: A logic for shared mutable data
structures. InLICS’02: Logic in Computer Science, pages 55–74.
IEEE Press, 2002.

[24] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. InSAS’05: Static Analysis Symposium,
volume 3672 ofLNCS, pages 284–302. Springer, 2005.

[25] S. Savage, M. Burrows, G. Nelson, P. Soblvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. on Comp. Syst., 15(4):371–411, 1997.

[26] E. Yahav. Verifying safety properties of concurrent Java programs
using 3-valued logic. InPOPL’01: Principles of Programming
Languages, pages 27–40. ACM Press, 2001.

[27] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning.
In FOSSACS’02: Foundations of Software Science and Computation
Structures, volume 2303 ofLNCS, pages 402–416. Springer, 2002.

11

A. Proof of Theorem 1 (Soundness)
Let q̃ ∈ bD be defined as follows: for each location(v1, . . . , vm)
and admissible lockset(L1, . . . , Lm)

q̃(v1, . . . , vm, L1, . . . , Ln) = γ

��
m

]©
i=1

Q(vi, Li)

�
]

�
]©

`i 6∈L
Ii

��
(whereL = L1∪ . . .∪Lm) and for each location(v1, . . . , vm) and
inadmissible lockset(L1, . . . , Lm), q̃(v1, . . . , vm, L1, . . . , Ln) =
⊥. We show thatF (q̃) v q̃. By Park induction principle this
implies thatq = lfp(F) v q̃, which is required.

First of all, from (5) and (7) it follows that

(F (q̃))(start1, . . . , startm, ∅, . . . , ∅) v
q̃(start1, . . . , startm, ∅, . . . , ∅).

According to the definition of the functionalF (Figure 3), it is
now sufficient to show that for all locations(v1, . . . , vj , . . . , vm),
admissible locksets(L1, . . . , Lm), and edges(v0

j , C, vj) ∈ E it is
the case that

gj
C(q̃(v1, . . . , v

0
j , . . . , vm), L1, . . . , Lm) v

q̃(v1, . . . , vj , . . . , vm, L1, . . . , Lm). (9)

There are three cases corresponding to the type of the commandC.
Case 1.C is a sequential command.We have to show that

fC(q̃(v1, . . . , v
0
j , . . . , vm, L1, . . . , Lm)) v

q̃(v1, . . . , vj , . . . , vm, L1, . . . , Lm). (10)

Let L = L1 ∪ . . . ∪ Lm, s1 = Q(v0
j , Lj), s2 = Q(vj , Lj), and

s =

0B@]©
1≤i≤m,

i6=j

Q(vi, Li)

1CA]

�
]©

`i 6∈L
Ii

�
. (11)

Then (10) is equivalent tofC(γ(s] s1)) v γ(s] s2). Since(Q, I)
is a fixed point of the functionalF], by the definition ofF] (Fig-
ure 5) we get

f]
C(s1) v s2. (12)

Then, since∗ andγ are monotone,

fC(γ(s] s1)) = fC(γ(s) ∗ γ(s1)) by (3)

v γ(s) ∗ fC(γ(s1)) by (2)

v γ(s) ∗ γ(f]
C(s1)) by (4)

= γ(s] f]
C(s1)) by (3)

v γ(s] s2) by (12)

Case 2.C is acquire(`k). We can assume that̀k ∈ Lj ,
otherwise the left-hand side of (9) is⊥. Thus, we have to show
that

q̃(v1, . . . , v
0
j , . . . , vm, L1, . . . , Lj \ {`k}, . . . , Lm) v
q̃(v1, . . . , vj , . . . , vm, L1, . . . , Lj , . . . , Lm). (13)

Let s be defined by (11) withL = L1 ∪ . . . ∪ Lm and let
s1 = Q(v0

j , Lj \ {`k}) ands2 = Q(vj , Lj). Since the lockset
(L1, . . . , Lm) is admissible and̀k ∈ Lj , (13) can then be rewrit-
ten asγ(s] s1] Ik) v γ(s] s2). From the definition of the func-
tional F] we gets1] Ik v s2. The required then follows from the
monotonicity of] andγ.

Case 3.C is release(`k). We can assume that`k 6∈ Lj , other-
wise the left-hand side of (9) is⊥. Thus, we have to show that

q̃(v1, . . . , v
0
j , . . . , vm, L1, . . . , Lj ∪ {`k}, . . . , Lm) v
q̃(v1, . . . , vj , . . . , vm, L1, . . . , Lj , . . . , Lm) (14)

and

q̃(v1, . . . , v
0
j , . . . , vm, L1, . . . , Lj , . . . , Lm) v
q̃(v1, . . . , vj , . . . , vm, L1, . . . , Lj , . . . , Lm). (15)

We first prove (14). Lets be defined by (11) withL = L1∪. . .∪
Lm ∪ {`k}, s1 = Q(v0

j , Lj ∪ {`k}) ands2 = Q(vj , Lj). We can
assume that the lockset(L1, . . . , Lj∪{`k}, . . . , Lm) is admissible
as otherwise the left-hand side of (14) is⊥. Since`k 6∈ Lj , (14) is
then equivalent toγ(s] s1) v γ(s] s2] Ik). From the definition of
the functionalF] we getLocalk(s1) v s2 andFramek(s1) v Ik.
From the monotonicity of] it follows that

Localk(s1)] Framek(s1) v s2] Ik. (16)

Then, since∗ is monotone,

γ(s] s1) = γ(s) ∗ γ(s1) by (3)

v γ(s) ∗ γ(Localk(s1)] Framek(s1)) by (6)

v γ(s) ∗ γ(s2] Ik) by (16)

= γ(s] s2] Ik) by (3)

which proves (14). We now proceed to prove (15). Lets be defined
by (11) and lets1 = Q(v0

j , Lj), s2 = Q(vj , Lj). Then (15) is
equivalent toγ(s] s1) v γ(s] s2). From the definition of the
functionalF] we have thats1 v s2. The required then follows
from the monotonicity ofγ and].

So, in all the cases (9) is fulfilled, which implies the statement
of the theorem. 2

B. Proof of Theorem 2 (Data race freedom)
Suppose the contrary: there exist a location(v1, . . . , vm),
an admissible lockset(L1, . . . , Lm), a state (t, h) ∈
q(v1, . . . , vm, L1, . . . , Lm), CFG edges(v1, C1, v

′
1) ∈ Ei

and (v2, C1, v
′
2) ∈ Ej (i 6= j) labeled with sequential com-

mandsC1 and C2 such thatC1, t, h 6; >, C2, t, h 6; > and
C1 ./(t,h) C2. Let s1 = Q](vi, Li), s2 = Q](vj , Lj), and

s0 =

0B@]©
1≤k≤m,
k 6=i, k 6=j

Q](vk, Lk)

1CA]

]©

`k 6∈L1∪...∪Lm

I]
k

!
.

Then by Theorem 1 and (3),(t, h) ∈ γ(s0)∗γ(s1)∗γ(s2). Hence,

(t, h) = (t0, h0) ∗ (t1, h1) ∗ (t2, h2), (17)

where

(t0, h0) ∈ γ(s0), (t1, h1) ∈ γ(s1), (t2, h2) ∈ γ(s2). (18)

Since(Q], I]) < >, from the definition of the functionalF]

(Figure 5) it follows that

f]
C1

(s1) < >, f]
C2

(s2) < >. (19)

Therefore,

fC1(t1, h1) v fC1(γ(s1)) by (18)

v γ(f]
C1

(s1)) by (4)

< > by (8) and (19)

So,fC1(t1, h1) < > and, analogously,fC2(t2, h2) < >. Hence,
C1, t1, h1 6; > and C2, t2, h2 6; >. From this and the fact
thatC1 ./(t,h) C2 using the definition of∗ and transfer functions
for sequential commands given in Section 4.1 we easily get that
(t1, h1) ∗ (t2, h2) is undefined, which contradicts (17). The intu-
ition behind this is that fromC1, t1, h1 6; > andC2, t2, h2 6; >
it follows that both(t1, h1) and(t2, h2) should have the full per-
mission for the same variable or location accessed byC1 andC2,
which makes the state(t1, h1) ∗ (t2, h2) inconsistent. 2

12

