Thread-Modular Shape Analysis

Josh Berdine

Microsoft Research
jjb@microsoft.com

Alexey Gotsman

University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk

Abstract

We present the first shape analysis for multithreaded programs tha
avoids the explicit enumeration of execution-interleavings. Our ap-
proach is to automatically infer a resource invariant associated with
each lock that describes the part of the heap protected by the loc
This allows us to use a sequential shape analysis on each threal
We show that resource invariants of a certain class can be charac
terized as least fixed points and computed via repeated application
of shape analysis only on each individual thread. Based on this ap-

proach, we have implemented a thread-modular shape analysis too

and applied it to concurrent heap-manipulating code from Windows
device drivers.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.L¢gics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Abstract interpretation,
shape analysis, static analysis

concurrent programming,

1. Introduction

The analysis of multithreaded programs is complicated in the con-
text of heap-manipulation, in particular, in the presenceleép
heap updatewhich occurs when linked data structures are altered
after traversing some a priori unbounded distance. Flow-insensitive
analysis for such programs is too imprecise. Hence, to date, the

sound, accurate, and automatic analyses for these programs hav

implemented flow-sensitive analyses that rely on enumerating the
interleavings of executions of threads in the program [26]. This
leads to state-space explosion and unscalability.

Our goal in this paper is to create a shape analysis for programs
with deep heap update that is scalable, sound, and accurate. We d&

k. . : ; . .
d. A resource invariant describes two orthogonal kinds of infor-

Byron Cook

Microsoft Research
bycook@microsoft.com

Mooly Sagiv*
Tel-Aviv University
msagiv@post.tau.ac.il

any given thread, the resource invariant restricts how other threads

can interfere with it. If resource invariants are known, analyzing a

multithreaded program does not require enumerating interleavings
and can be done using a sequential shape analysis. The challenge is
to infer the resource invariants.

mation: it simultaneously carves out the part of the heap protected

gay the lock and defines the possible shapes that this part can have

during program execution. Hence, informally, resource invariants
‘or heap-manipulating programs are not least fixed points of any
irst-order equation. We show that, if we specify the borders of the
part of the heap protected by a lock (i.e., the former kind of infor-
mation), then we can characterize the shape of the part (i.e., the
latter kind of information) as a least fixed point. This fixed point
can be computed by repeatedly performing shape analysis on each
individual thread, but not on the whole program, i.e., performing
the analysishread-modularly The analysis is able to establish that
the program being analyzed is memory-safe (i.e., it does not deref-
erence heap cells that are not allocated), does not leak memory, and
does not have data races (including races on heap cells).

We specify the borders of the part of the heap protected by a
lock with two sets of program variables—the setewitry points
and the set okxit points The part of the heap protected by the
lock is defined as everything that is reachable from entry points up
to exit points. Therefore in the subheap carved out by a resource
invariant, exit points are pointers that lead to parts of the global
heap owned by others. Fortunately, for systems code (e.g., device
drivers), we find that automatic tools [22, 25, 5] suffice for inferring
the entry points In more complex cases the entry and exit points
can be given by the user as annotations (or may be other analyses
for them could be found).

Our approach can be rephrased as follows: we assume that the
borders between parts of the heap owned by different threads or
rotected by different locks argtablein the sense that they are

so by constructing a shape analysis that avoids enumerating inter-Pointed to by fixed stack variables. These borders are not required

leavings. Our approach is to infer@source invarianf20, 19] as-

to be immovable, and we do not preclude ownership transfer of

sociated with each lock that describes the part of the heap protected€@p cells between areas owned by different threads or locks. That

by the lock and has to be preserved by every thread. E.g., a resourcé®

invariant for a lock can state that the lock protects a cyclic doubly-
linked list with a sentinel node pointed to by the variahéad For

* A part of this work was done while visiting Microsoft Research, Cam-
bridge, UK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11-13, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

, while the stack variables which mark the borders are fixed,
their values are mutable. So heap cells can move between the parts
owned by different threads or protected by different locks.

Our contributions can be summarized as follows:

¢ We propose a framework for constructing thread-modular pro-
gram analyses, which is particularly suitable for shape analy-
ses due to the locality exhibited by the semantics of heap-
manipulation (Section 3). Our framework is parametric in the
sequential shape analysis domain and can be instantiated with
different domains.

1 Moreover, the soundness of our analysis does not depend on the particular
association of locks and entry points: the analysis can be used with any
association.

Voou= muy,... node,E- is the pointer in therevfield of the first node, ands

E u= nllV is the pointer in theextfield of the last node.

I == TNAN|E=E _ . _)

Y = T xX|emp|true| E—~{prev E, next £} e The meaning of propositional connectivesie and the existen-
| dI(E,E,E,E) tial quantifier is standard.

¢ = IVIIAZ

The analysis first uses a tool for analyzing correlations between
locks and program variables, such as [22, 25, 5], to determine that
Figure 2. A subsetd of separation logic formulae the variableh is protected by the lock The variabléh becomes an
entry pointassociated with the lock the part of the heap protected
by the lock is reachable from the entry point. There are no exit

« We give a fixed-point characterization of a class of resource in- POINts associated with the lodkin this example. The analysis is

variants for heap-manipulating programs that provides a way performed iterativgly. On each iteration, we analyze the code of
to compute them via a thread-modular fixed-point computa- each thread and discover new shapes the part of the heap protected

tion (Section 4). For programs that have resource invariants PY €ach lock can have—new disjuncts in its resource invariant.
from this class, the precision of our thread-modular analysis de- On the next iteration each thread is re-analyzed taking the newly

pends only on the precision of the underlying (sequential) shape discovered disjuncts into account. This loop is performed until no
analysis. new disjuncts in the resource invariant are discovered, i.e., until
. . .. we reach a fixed point on the value of the resource invariant. Note
* Based on the framework and on the fixed-point characterization nat the particular order of the iteration is not important for the
we develop a thread-modular shape analysis (Section 5) and ap-soundness of the analysis. In the example below we chose the order
ply it to multithreaded heap-manipulating code from Windows - that is convenient to illustrate how the analysis works.
device drivers (Section 6).

Executing the analysis. As a first step, we run the underlying

. sequential shape analysis on tmain function to determine the

2. lllustrative example initial approximationl, = h—{prev. h, next h} of the resource
The examp|e program in a C-like |anguage shown in Figure 1 invariant associated with the loék The initial states of the threads

represents a typical pattern occurring in systems code, such agdn this case aremp. . . .
Windows device drivers. In this case two concurrently executing First iteration. We run the underlying sequential shape analysis
threads are accessing the same cyclic doubly-linked list protectedon the code othreadlwith the treatment fomcquire andrelease
by a lock¢. The list is accessed via a sentinel head node pointed commands described below. The analysis performs a fixed-point
to by a variableh. In this examplethreadl adds nodes to the ~ computation to determine invariants of all the loopsttineadl
head of the list andhread2removes nodes from the head of the Suppose the analysis reaches line 14 with an abstractsstdfgon

list. When applied to this code, the implementation of our analysis acquiring the lock the threadjets ownershipf the part of the heap
presented in Sections 5.2 and 6 establishes that the area of the heaprotected by the lock. We mirror this in the analysis<gonjoining
protected by the lock—its resource invariant—has the shape of athe current approximatio of the resource invariant associated
cyclic doubly-linked list and that the program is memory-safe (i.e., With the lock to the current state yielding s * Io. The analysis

it does not dereference heap cells that are not allocated), does noff the code in lines 15-20 starting from this state then gives us
leak memory, and has no data races (including races on heap-cells)the states; = s * h—{prev.n,nextn} x n—{prev h, next h}

The analysis uses an underlying sequential shape analysisat line 21. Upon releasing the lodkthe thread has to give up
which is similar to the one presented in [9]. The abstract states andthe ownership of the part of the heap protected by the lock. This
resource invariants in the analysis denote sets of stack-heap pairgneans that the analysis has to partition the current eapto
and are represented by disjunctions of formulae in the subset oftwo parts, one of which becomes the local heap of the thread (the

separation logic [23] defined in Figure 2. The informal meaning of Part of the heap that the thread owns) and the other is added as a
the formulae is as follows: new disjunct to the resource invariant. We compute the partitioning

in the following way: the part of the heap reachable from the
emp describes states where the heap is empty, with no allocatedentry points associated with the lo¢kbecomes a new disjunct in
locations. the resource invariant and the rest of the heap becomes the local
E—{prev E1, next E,} describes states where the heap con- State of the thread. Intuitively, when a thread modifies pointers
tains a single allocated locatidh, with contents being a struc- 10 @ heap cell so that it becomes reachable from the entry points

ture in which the ﬁe|d$revand nextare equal toE‘l andE2_ associated with a |0Ck, the cell becomes protected by the lock and
The values of the other fields in the structure are unspecified by @ part of its resource invariant. In this way, we discover a new
this formula. disjunctl; = Jz.h—{prev: x,next z} z—{prev h,next h} in

the resource invariant and a new stateeachable right after line
21. Note that since the variableis not an entry point associated

31 x Yo describes states where the heap is the union of two

disjoint heaps (with no locations in common), one satisfying it the lock¢, we existentially quantify it in/1. We keep running

21 and the other satisfyings. the fixed-point computation defined by the underlying sequential
e i1 = E, describes states where the stack gi#gsand F» shape analysis starting from this state to discover the invariant of

equal values. the loop in line 13 (as well as all other loops in the thread). The

dll(Ey, Es, Es, Eu) is defined as the least predicate such that processing of_ Iine_s 14 and 21 is the same as before, i.e., we use the
e same approximatioti, of the resource invariant and get the same

dii(E1, Es, E3, E4) < Jx.(E1 = E3s A B2 = E4 Aemp) V disjunct;. We stop when the underlying shape analysis reaches a
(Er—{prev Eo, nexta} « dil(z, B1, Es, Es)) fixed point. One new disjundt of the resource invariant has been
’ Y discovered.
and represents all of the states in which the heap has the shape We now analyze the code tfiread2 Whenever the analysis
of a (possibly empty) doubly-linked list, whet@, is the ad- reaches line 28 with an abstract stgtewe conjoin the current

dress of the first node of the lisk), is the address of the last approximation/; of the resource invariant to the stateyielding

1 struct ListEntry 10 threadX) { 24 thread2(){ 39 main() {
2 11 intdatg 25 intdatg 40 h=newListEntry,
3 ListEntry* next 12 ListEntry* 26 ListEntry* n; 41 h—next= h;
4 ListEntry* prey, 13 while (nondef)) { 27 while (nondef)) { 42 h—prev=h;
5 intdata 43 startThread&threadl);
6 }; 14 acquire(£); 28 acquire(£); 44 startThread&thread?);
7 15 n = new ListEntry; 29 n = h—next 45 }
8 Lock!: 16 n—data= datg 30 if (n!=nh){
9 ListEntry* h; 17 n—next= h—next 31 n—prev—next= n—next

18 n—prev= h; 32 n—next>prev= n—prey,

19 h—next= n; 33 data= n—datg

20 n—next-prev= n; 34 deleten;

21 releasd?); 35

. 36 releasd?);
22
23 } 37}
38 }

Figure 1. Example programmondet) represents non-deterministic choice.

q = I, and analyze the code in lines 29-35 starting from this state.
This gives us the statg = g+ h—{prev h, next h} at line 36. We
again take the part of the heap reachable fifoas a new disjunct

in the resource invariant and let the rest of the heap be a new local
state of the thread. In this case the new disjunct in the resource
invariant is the same as the starting dpeso, no new disjuncts in

the resource invariant are discovered.

Second iterationOn the previous iteration we found a new dis-
junct I; in the resource invariant associated with the I8cKhis
means that whenever a thread acquires the fpékcan get own-
ership of a piece of heap with this new shape. To account for this
in the analysis we now consider this possibility for atiquire(¢)
commands in the program and perform the analysis on threads
starting from the resulting new states.threadlwe obtain a new
states = I; at line 15. The analysis of the code in lines 15-20 in
this case gives us the statg = Jz.s x h—{prev z,nextn} x
n—{prev: h, next z} xx—{prev n, next h}. at line 21. Again, the
part of the heap reachable frolnforms a new disjunct in the re-

source invariant. To ensure convergence we abstract it before sav-

ing: the abstraction procedure similar to the one presented in [9]
abstracts the heap that has two cellBndxz connected in a doubly-
linked list to a general doubly-linked list giving us a new dis-
junct in the resource invarianf; = 3z, y.h—{prev z, next y} *
dli(y, h, h, x). A similar procedure fothread2again gives us the
stateg; at line 36. No new disjuncts in resource invariants are dis-
covered while analyzing this thread.

Third iteration. We propagate the newly discovered disjunct
I, of the resource invariant tacquire commands. The new
states * I at line 15 gives rise to the statg Jz,y.s *
h—{prev: z, next n}xn—{prev h, next y}«dll(y, n, h, z) atline
21. Partitioning it into the part reachable fromand the part
unreachable fronk and abstracting the latter gives us again the
resource invarianf, and the states. Propagating the new dis-
junct in the resource invariant to line 28 yields the stgte=
Jz, y.qgx h—{prev z, next y} xdll(y, h, h, z) at line 36. Partition-

3. Thread-modular shape analyses

In this section we present a general framework for constructing
thread-modular shape analyses based on the inference of resource
invariants associated with each lock that describe the part of the
program state protected by the lock. Abstracting from particu-
lar domains used in shape analyses we formulate it in general
lattice-theoretic terms. We use the framework first in Section 4
to give a fixed-point characterization of resource invariants for
heap-manipulating programs and then in Section 5 to implement
a thread-modular shape analysis.

3.1 Preliminaries

We consider concurrent programs consisting of a bounded number
of threads that use a bounded number of non-aliased locks for
synchronization. Each thread is represented by its control-flow
graph (CFG). For any nodes andwv; in a CFG there are three
types of edges that can connect them:

e (v1,C,v2), whereC'is an element of a fixed sétof sequential
commands;

e (v1,acquire(?), v2) corresponding to acquiring the lo¢k
e (v1,releasd?), v2) corresponding to releasing the loék

Consider a program withn threadsP, ..., P, in which P; is
represented by a CFG with the set of nodésand the set of edges
E;. LetL = {¢4,...,¢,} be the set of locks used in the program.
Let N = U, Vi, E = U;~, E:, andstart; be the start node
of threadi. Without loss of generality we assume that there are no
edges in the CFG of the program leading to a start node. We call
atuple(vs,...,vm), Wherev; € N; a location. We now define a
collecting interleaving semantics for the program.

In this paper by alomainD we understand a join-semilattice
(D,C,|],L, T) with a bottom elementL. We assume given a
domain D representing sets of states of the program and a set of

ing this state again does not result in new disjuncts in the resourcemMonotone concrete transfer functiofis : D — D representing

invariant being discovered.
No new disjuncts in resource invariants were discovered on

the semantics of sequential commar@dsc C. The functionfc
maps pre-states to states obtained by executing the com@iand

this iteration, hence, we have reached a fixed point. The resourceffom a pre-state.

invariant for the lock/ computed by the analysis s Vv I V Is.
Furthermore, the program is memory-safe. O

Programs in our semantics denote mappings from locations
and sets of locks held by each thread to elements of the do-
main D. Formally, programs denote elements of the donfaia=
(N1 X ... X N») — ((P(£))™ — D) ordered by the point-
wise extension of£. We call an element froni/P(£))™ a lockset
and say that a locks€tL, ..., L) is admissibleif the sets of

F(q) = ¢ where

® ¢/(starty,...,starty,0,...,0) = pre;
m .
® ¢ (vi,...,Vm, L1,...,Lm) = || L g’c(q(vl,...,v?,...,vm),Ll,...,Lm),if (L1,..., L) is admissible, where
Jj=1 ('UJQ,C';U]')EE ’
fo(s(L1,...,Lm)), if C'is a sequential command
Ga(5, Lty L) = s(L1,...,Li\{4},..., Lm) if C ?sacquire(éi) and/; € Lj;
c s(L1,...,L; U{€;},...,Lym)Us(L1,...,L;,...,Ly) if Cisreleasd?;) andl; ¢ L;;
J J J
1, otherwise.

Figure 3. The functionalF’ defining the concrete collecting semantics for a multithreaded program

locks held by different threads are disjoint, i.e., for eadmd j Values = {...,—1,0,1,...} | Locs = {1,2,...}

such thati # j it is the case thal,; N L; = . Forq € D, Vars = {z,y,...} Stacks = Vars —qy Values
q(vi,...,vm, L1,..., L), denotes the set of reachable states of geips = Locs —n Values | States = (Stacks x Heaps) U {T}
the program at the locatiofvs, . . ., v,) such that the lockset held = P(States)

by threads i L1, ..., L). The reason for having a lockset as an

argument of; is that locking does not have to be lexically scoped, Figure 4. Example of a separation domain

hence, reachable states at each location may have different locksets.
We assume a givepre € D representing the initial states of
the program. The semantics of the program is defined using the

8 ~ = X ; * x is associative and commutative:
functional F : D — D that takes a functiop € D and maps it to

a functiong’ € D following the rules shown in Figure 3. Since the Vu,v,w € D.ux (vxw) = (u*v)*w;
transfer functiongc are monotone, by Tarski’s fixed point theorem Yu,v € D. uxv=0v*u;

the functionalF’ has least fixed poirfp(F'), which represents the

denotation of the program. ¢ x has the unie: Vu € D. u x e = u;

Consider the second equation in Figure 3. According to it, to @ * is monotoneYui, uz,v € D. u1 T uz = w1 * v T ug * v.
compute the state at any location (except for the initial one) we
consider all the edges in the CFG that can be taken by any single We use a slight variation on the following instance of a sepa-
thread that lead to this location (hence, the semantics is based orration domain in the further sections to design a thread-modular
interleaving) and take the join of the application of the function = shape analysis.
for each of these edges (hence, the semantics is collecting) to the
state at the source node. Note that here we use partial applicationExample. Figure 4 defines a separation domdnfor the con-
of the functiong. The functiong defines the semantics of the crete semantics of heap-manipulating programs [27]. A state of the
statement at each edge of the CFG. For a sequential commandorogram is a stack-heap pair or a special error staté stack is
it applies the transfer function for this command. Post-states of a finite partial function from variables to values, a heap is a finite
acquire(¢;) for a lockset in which the threa®; holds the lockl; partial function from locations to values. The domain consists of
are the same as pre-states in which the thigadoes not hold the sets of states of the program. We identify all the sets of states con-
lock £;. Hence, acquiring a lock by a thread corresponds to adding taining T and denote such elements of the domain simply wWith

this lock to the lockset of the thread. For thequire(¢;) command The order in the domai is subset inclusion withl being the

the functiong filters out the pre-states in which the thre@dholds topmost element. This is essentially equivalent to using a topped
the lock;. Hence, a thread locking the same lock twice deadlocks. powerset. However, in the further sections the formulation we use
Post-states akleasé€/;) for a lockset in which the threaB; does here allows us to simplify certain definitions.

not hold the lock/; contain pre-states in which the thre&gd does In this paper we use the following notation for partial functions:

not hold the lock?; as well as pre-states in which it does. Hence, f(z)| means that the functiorf is defined onz, f(z)T means
releasing a lock by a thread corresponds to removing it from the that the functionf is undefined orx, anddom(f) denotes the set
lockset of the thread if it is there, and to a no-op if it is not there. of arguments on which the functighis defined. We denote with
This semantics of releasing a lock corresponds to treating locks asf[z : y| the function that has the same value fagverywhere,

binary semaphores. except forx, where it has the valug (even if f(z)1). f W g is the
. . . . union of the disjoint partial functiong andg. It is undefined if
3.2 Abstract interpretation with state separation dom(f) N dom(g) # . We denote withf|, the function identical

As can be seen from the illustrative example in Section 2, in our to f except for its domain has been restricted to thelset
thread-modular shape analysis we have to split abstract heaps into We define the operation of separate combination on the domain
disjoint parts. For this to be possible the concrete and abstract do-D in the following way: forsi, s2 € States

mains have to have a separated structure that allows for performing _

such splittings. In this section we specialize the conventional notion %1 * %2 = {(t1 Wiz, ha Wha) [(81, h1) € 81 A (2, he) € 82},
of abstract interpretation [7] for the case when the domains have s1x T =Txsy=T.

such a structure. In the subsequent sections we use this specializa;rhe unit element with respect to this operation is a singleton set
tion as a foundation for designing thread-modular shape analyses. . . p P . 9
containing a pair of everywhere undefined functions. A reader

DEFINITION 1 (Separation domain)A separation domainisado- familiar with separation logic [23] can immediately notice that

main (D,C,| |, L, T,e,) equipped with an operation of sepa- the definition ofx we gave here corresponds to the model of the
rate combinationx : (D x D) — D such that(D,C,e, %) is a separating conjunction from separation logic in the case when
partially-ordered commutative monoid, i.e.: variables are treated as resources [21]. m|

As can be seen from the example above, in this paper we useF*(Q,I) = (Q’,I") where
the topmost element of a separation domain to indicate a potential Q' (start;, 0) = Pre;(pret);
error. In this case the operation should also satisfy the following v ’ '

requirement: * Q' (v,L)= U g”C(Q(vO), L) for every nodey € N, where
(v9,Cv)EE
Vu,v € D.uxv=T=>u=TVo=T. 1) guc(s,L):
That is,+ does not produce the error state unless one of its argu- fg(s(L)), if C is a sequential command
ments is the error state. s(L\{&:})t1;, if C isacquire(¢;) and¢; € L;

For a program analysis to benefit from the structure present

in a separation domain, transfer functions defining the concrete Locali(s(L U{6:})) U s(L), If Cisreleasd;) and; & L;

semantics of sequential program statements have to behave in a ’ otherwise;
local way with respect to this structure. The following definition e 1! = Init; (pref) U L Frame;(Q(v°, L))
formalizes this condition. (v releasd ¢;),v)EE,
{€;}NL#0
DEFINITION 2 (Local function).A functionf : D — D defined for each locke; .
over a separation domaifD, C, | |, L, T,e,) is local if for all
u,v € D itis the case that Figure 5. The functional F** defining a thread-modular analysis.
FunctionsLocal; andFrame; define a heuristic that decides how to
fluxv) E f(u) *v. &) split the state upon releasing a lodke; andInit; decide how to

i X X) X i e u
For the separation domains we consider in this paper, intuitively, if SPIit the initial abstract statere” between threads and locks.

f is the meaning of a commard, this condition requires that if
executingC' from a state i x v results in an errof (u xv) = T,
then executing” from a smaller state im also produces an error:
T C f(u) xvimplies f(u) = T by (1). Furthermore, if executing
C from a state inu does not produce an error, then executing
from a larger state, in. x v, has the same effect and leaves
unchangedy (u x v) = f(u) * v.

The construction of thread-modular shape analyses is possible
due the fact that concrete transfer functions for all standard heap-
g(zrx]pplftlae.ltmg commands are local as illustrated by the following VueDb.Cec. fely(u) © v(fé(u)). 4)

Example. Consider the domaif from the previous example and ~ Note that we use the same symbols for the order, bottom and top
atransfer functiorf : D — D corresponding to the command that elements, and the join operator for both domains when it does not
stores the value of the variableat the address equal to the value cause confusion. Note also that we do not require that the abstract
of the variabler, in C syntax %= = y". We first define a function ~ transfer functions be local or monotone.

f : States — D. Fort € Stacks andh € Heaps

ft,h) = {(t,h[t(az) ct(y)]), i t(@)] t)], h(t(x))]

¢ ~ is a homomorphism between the monoids in the abstract and
concrete separation domains:

Yu,v € D' y(uv) = v(u) *y(v); 3)

e abstract transfer functions over-approximate the concrete ones:

3.3 Constructing thread-modular shape analyses

We now define a thread-modular analysis on a multithreaded pro-
gram. The main idea of the analysis is to infer the part of the
We let f(T) = T and lift f to D pointwise. state protected by each lock—its resource invariant. Resource in-
The functionf is local—when run on a piece of state it either variants are computed incrementally during the analysis, therefore,
produces the same result as when run on the extended state or ifor each locké; the analysis maintains the current approximation
producesT. | I, € D% of a corresponding resource invariant. In addition, for
every nodev in the CFG and every set ﬁof locks the analysis
: : _maintains the part of the stafg(v, L) € D* owned by the thread
Consider a concurrent programming language from the class de at the nodev in the case when the set of locks held by the thread

fined in Section 3.1. In Section 3.3 we show how, given an analysis : I—its local state. E v th vsi N the d -
for the underlying sequential language, we can construct a thread-'S ~—tS local state. orm? Y, the analysis operates on the domain
Y= (N = (P(L) — D%) x (D*)™ ordered by the pointwise

modular analysis for the concurrent language. More precisely, we \
extension of the abstract order.

assume given: . - . &
We denote with®) the iterated version of: @;_,z: =

T, otherwise

¢ a concrete separation domdi, C, | |, L, T, e,) represent- T f. .. B
ing sets of concrete states of the program; TheAthreadA-moduIar analysis is defined using the functional
e an abstract separation domai*,C,| |, L, T,e, t) repre- Fﬁ,1 ,Dﬁ — D that takes a tupléQ, I) and produces a tuple
senting sets of abstract states of the program; (Q',I") as shown in Figure 5. The analysis receives as input an

initi # f
« a monotone concretization functign: D — D: abstract initial state of the prograpre® € D* such that
e monotone concrete transfer functiofis : D — D defining pre C ~(pre*) (5)

the concrete semantics of sequential commandsc; .) . . .
] o and is parameterized with the following functions:
« abstract transfer functiont, : D¥ — D* defining the abstract
semantics of sequential commar@s= C. e Local; : D¥ — D¥ andFrame; : D¥ — D" for eachi = 1..n

#
We assume further that: such that for alk € D

e concrete transfer functiong are local; 7(s) E ~y(Local;(s) f Frame; (s)); (6)

e Pre; : D' — D' for eachi = 1..m andlnit; : D¥ — D" for Voou= o omy,... variables
eachi = 1..n such that for alk € D* E u= ool V expressions
G 1= E==F|E!=E branch guards
~(s) C v ((® Pre,-(s)) § (® Initi(s))>) @) C i: \‘;jng;t'l/E: V-next sequential commands
=1 i=1 -
| V = new| deleteV/

Pre; andlnit; determine the initial splitting of abstract state’ | assuméq)
between threads and lockBre; andInit; map the abstract initial
state of the prograrpre to the abstract initial state of thread Figure 6. Sequential commands for a heap-manipulating concur-

respectively, the initial approximation of the resource invarignt rent programming language
The condition (7) ensures that, when recombined, the results are an
over-approximation of the abstract initial state.

The interesting part of the analysis concerns the treatment of ones. Formally, if we add an extra copy of a threddinto the
acquiring and releasing locks. When a thread acquires adgck program and change the concrete and the abstract initial states so
it obtains the current approximation of the corresponding resource that the condition (7) is still satisfied (which corresponds to adding
invariant—the current approximation of the resource invariagtis an extra piece of state to the initial state of the program to form
conjoined with the current local state of the thread to yield a new a precondition for a newly added thread), then the results of the
local state. analysis for the new program with tkig for the new thread equal

When a thread releases the logk its current local state is to theQ for P; still form a fixed point of the new functionaf®
partitioned into two parts, one of which returns to the resource and, hence, over-approximate the concrete semantics.
invariant and the other one stays with the thread. The functions Similar versions of the specialization of abstract interpretation
Local; and Frame; determine this splitting. The functiobocal; presented in Section 3.2 were developed independently and can
determines the part of the state that becomes the local state of thealso be used as a basis for scaling up other static analysis algo-
thread and the functioRrame; the part that goes to the resource rithms even for programs without multithreading and dynamically
invariant. The condition (6) ensures that the combination of the allocated memory (see [13] for more information). For example,
parts of the splitting over-approximates the given abstract state. they are applicable in interprocedural analysis to split off the (ab-

Note that the treatment of locksets in processioguire or release stract) state of the called procedure from the abstract state of the
commands in Figure 5 mimics the one in the concrete semanticscaller [24, 12].
(Figure 3).

A computation of a fixed point of the function&l* would an- 4. Resource invariants as least fixed points

alyze each thread accumulating possible values of resource invari-]))

ants during the analysis. Each time a new possible value of a re-In this section we show that if the borders of the part of the
source invariant associated with a lock is discovered, it would have heap protected by a lock are specified, then the resource invariant
to be propagated to evepcquire command for the lock. Hence, describing t_hls part can be defined as least flxe_d point of a first-
each thread is analyzed repeatedly, but separately, without explor-order equation. For programs that have resource invariants from the
ing the set of interleavings. In this sense the analysis definddfby ~ class we define here the precision of our thread-modular analysis
is thread-modular. Note also that after the analysis splits the statedepends only on the precision of the underlying (sequential) shape
at areleasecommand, it loses correlations between the parts of the analysis.

state that become local states of the thread and the parts that go to 10 Show how to design thread-modular shape analyses we ab-
the resource invariant. This loss of precision is similar to the one Stract from the particular shape domain used and construct an ide-

observed in thread-modular model checking [11]. alistic shape analysis that operates on concrete states. We do this
We are now in a position to state and prove the soundness of by instantiating the framework of Section 3.3 with the same con-
the analysis defined by the function&f. The following theorem crete and abstract domains. In Section 5 this instantiation serves
says that reachable states at the locatian. . ., v,,) such thatthe ~ as a template for designing thread-modular shape analyses. The
lockset held by threads {1, . . ., L.,) are over-approximated by ~ Instantiation provides a fixed-point characterization of a class of
the combination of the local states of all threads along with resource 'éSource invariants and can be seen as defining a non-standard con-
invariants associated with the locks that are not in the lockset. The Créte semantics. Theorem 1 ensures its adequacy with respect to the
conditions listed at the end of Section 3.2 pinpoint the sufficient Standard collecting interleaving semantics.
requirements that the underlying sequential analysis has to satisfy
for the thread-modular analysis to be sound and are used in the
proof of the theorem. Programming language. We consider a concurrent heap-
manipulating programming language from the class of concurrent
THEOREM1 (Soundness).et g be least fixed point of the func- CFG-based languages defined in Section 3.1 with sequential com-
tional I defined in Figure 3 andQ, I) be a fixed point of the func- mands shown in Figure 6. To simplify presentation we assume that
tional F* defined in Figure 5. Then for each locatiom, . . ., vm) each structure stored in the heap has only one field The devel-
and admissible locks¢t.s, .. ., L) opment carried out in this section generalizes easily to the case of

4.1 Programming language and concrete semantics

m structures with multiple fields. The meaning of commands is stan-
q(v1,...,vm,L1,...,Ly) C~ ((@ Q(vi, Li)) i (® Il)> dard.assuméG) acts as a filter on the state space of prograrGs—
i=1 LigL is assumed to be true aftassumeis executed. It is used to replace
wherel = L1 U...U L,,. conditional expressions imhile andif statements while translating
programs to CFGs.
The proof appears in Appendix A. Consider a program in the language introduced above consisting
Note that although we have assumed a fixed number of threads,of threadsP, ..., P, (represented by their CFGs) with locks
from the definition of the functionaf® it follows that the results of 41, ...,4, and a preconditiopre.

the analysis are sound for an unbounded number of copies of these The domain of statesWe now define a concrete semantics and
threads provided they have the same initial states as the originala corresponding concrete separation donféamnC, | |, L, T, e,)

Values ={...,—1,0,1,...}

Heaps = Locs —g, Values

Stacks = Vars —g, (Values x Perms)
States = (Stacks x Heaps) U{T}

Locs = {1,2,...}
Perms = (0, 1]
Vars = {z,y,...}
D = P(States)

Figure 7. The domainD of the concrete semantics

for this language. As was previously noted, in our fixed-point char-
acterization of resource invariants for heap-manipulating programs,

we assume that the borders between parts of the heap owned by dif-

ferent threads or protected by different locks are stable, i.e., pointed
to by fixed stack variables. We thus have to account for the fact that

x=1y,t,h~ tlx: (Valy(y),1)],h
z=null,t,h~ tfz:(0,1)],h
x = y—nextt, h~ t[z: h(Vali(y))], h

if Perm¢(z) = 1,¢(y)|
if Perm¢(z) =1

if Permy(z) =1,
()L, h(Vale (1))

it o)1, t(y) .
h(Valg(z))|

if t(z)],h(Vale(z))]
if Perm¢(z) =1,

a € Locs \ dom(h),

e € Values

if t(x)] , e € Values

if [G]t],[G]¢ = true
if [G]t], [G]t = false
otherwise

x—next=y,t, h ~ t,h[Vali(z) : Val¢(y)]

z—next= null,t, h ~ t, h[Val¢(z) : 0]
x =new,t,h~ tx:a],hla: €]

deletex, t, h[Vali(z) : €] ~ ¢, h
assumé€G),t,h ~ t, h
assuméG), t, h %

Cit,h~ T

local state of several threads and resource invariants of several lockssigyre 8. Transition relation for primitive command§G[t €

may reference the same variable. Supposing that therk sueh

{true, false} is the valuation of the guar@ over the stack (which

locks and threads, we handle this case by giving to each thread ands yndefined ift is undefined for a variable used @). Here %

lock a fractional permissioi/k for this variable [2]. The permis-
sion shows “how much” of this variable is owned by the thread or

protected by the lock. The idea is that a thread having a permission

less thanl for a variable can read it; a thread can write to a variable
only if the permission associated with it in its local state is equal
to 1, i.e., only if it gathers the permissions from all the other locks
that own this variable by acquiring them. Thus, as our concrete do-
main we chose an extension of the example of a separation domai
presented in Section 3.2 with fractional permissions for variables.
The domainD is defined in Figure 7. As before, we identify
all the sets of states froritates containingT™ and denote such
elements of the domain simply witfi. The order in the domain
is subset inclusion withT being the topmost element, the join
operation is set union, and the bottom element is the empty set.
We proceed to define an operation of separate combination
on the domain. Informallyx adds up permissions for variables and
computes the disjoint combination of heaps. It corresponds to the
model of the separating conjunction from separation logic in the
case when variables are treated as resources with permissions.
Fort € Stacks let functionsVal; andPerm; be selectors for
values, respectively, permissions, of variables on the stack: for
all x € Vars, (Valy(x),Perm,(z)) = t(z) and, additionally,
Perm,(z) = 0if ¢(x)1.
We define the combination * ¢2 of stacksty,t2 € Stacks as
follows: if Vo € Vars. Permy, (z)+Permy, (z) < 1A(Valy, (z)[A
Valy, (z)| = Valy, (x) = Valy, (z)), then

(t1 * t2)(x)

(Valy, (z), Permy, (z) 4+ Permy, (z)), if Valy, (z)];
(Valy, (), Permy, (x) 4+ Permy, (x)), if Valy, (x)];
undefined otherwise

andt; = to is undefined otherwise.
We define the combinatioty * ho of heapshi, ho € Heaps in
the following way:

hl*hzz{

Finally, for t1,¢> € Stacks andhi, ho € Heaps we let(t1, h1) *
(tg,hz) = (tl *tg,hl*hz),fors cDweletTxs=Txs=T,
and we liftx to D pointwise.

The unit elemeng of x is the singleton set containing a pair of

hiWho, if dom(h1) Ndom(hs) = 0;
undefined otherwise.

denotes that the command does not fault, but gets stuck.

show that for each primitive commaddfrom Figure 6 the transfer
function f¢ is monotone and local.

4.2 Fixed-point characterization

n

In the setup of Section 3.3 we let both the abstract separation
domain D* and the concretd) be equal to the domain defined

in Section 4.1 and the abstract transfer functions be equal to the
concrete onesy is the identity function. We also lgtre’ = pre.

All the conditions listed at the end of Section 3.2 are satisfied.

We would like to characterize resource invariants as least fixed
points of a functional from the class defined in Figure 5. To do this
we have to provide functionkocal; and Frame; (i = 1..n) for
each lockPre; (i = 1..m) for each thread, anldit; (i = 1..n) for
each lock.

To this end we assume that for each léckve are given two sets
of program variables, which specify the borders of the part of the
heap protected by the lock—the setesftry pointsEntry(¢;) and
the set ofexit pointsExit(¢;). The part of the heap protected by the
lock is defined as everything that is reachable from entry points up
to exit points. Therefore, exit points are pointers that lead to parts
of the heap owned by others. In addition, for each thr€adve
assume given the s@wns(P;) of program variables that it owns.
These are variables that the thread is allowed to access even without
holding any locks. We defin@wns(¢;) = Entry(¢;) U Exit(¢;).

First, we define howLocal; and Frame; partition the stack.

To this end we define an auxiliary function that describes the
ownership partitioning of the stack. For a thread or I&tkPerm%
defines via permissions the part of the stack owne@bfor each

x € Vars

For a stackt € Stacks if Vo € Vars. t(z)| = Permp (z) <
Perm¢(z), then let

Local;(t) = Az.(Val¢(z), Perms(z) — Permgi (),
Frame;(t) = Az.(Vali(x), Perm?i (2)),

1/|{P"| x € Owns(P")}|,
undefined

if x € Owns(P);
otherwise.

0
Permp

(z)

otherwise letLocal; (t) = Frame;(t) = T.

an empty heap and an empty stack, both represented by everywhere We now define howLocal; and Frame; partition the heap.

undefined functions.

Transfer functions.We define the concrete transfer functions
fc : D — D for primitive commands using the transition relation
~» shown in Figure 8. We lefc(t,h) = {s | C,t,h ~ s},
fe(T) T, and lift fc to D pointwise. It is not difficult to

Frame; takes the part of the heap reachable from entry points up
to exit points. The intuition is that modifying pointers to a heap cell
such that it moves into this part of the heap means that it becomes
protected by the corresponding lock and a part of its resource
invariant (recall that in the analysieame; computes the part of

the heap that goes into the resource invariant). The rest of the heapthe standard syntax and semantics [23] is that we treat variables as

becomes the result dfocal;. resources [21] (as required by the semantics in Section 4.1). The
Fort¢t € Stacks, h € Heaps, and a locke; let d(¢;,t,h) syntax of formulae is the same as in Figure 2 except for the follow-
be the smallest setl such that(Val;(Entry(¢;)) U (h(d) \ ing:

Val;(Exit(¢;))))NLocs C d. d(4;, t, h) defines the part of the heap

reachable from the entry points of the lo€kup to exit points as- * Each formula is prefixed with an expression of the form

sociated with this lock. We now let fare Stacks andh € Heaps pizy, ..., prty describing the stack, wherg; is a number
in (0, 1] representing the permission for the variableand
Local;(t, k) = (Locals (¢), hlaom(n)\ace; t.0))s x1,...,xx is the list of free variables in the formula.
Frame;(t, h) = (Frame;(t), h|ace, ,n))- o We useF;—{next E»} instead ofE— {prev £, next £}.
Here we assume thatT,h) = T. We let Local;(T) = e We use a predicate(E1, E-) for singly-linked lists rather than
Frame;(T) = T and lift Local; andFrame; to D pointwise. a predicate for doubly-linked lists.

We proceed to determine the initial splitting of the heap among
threads and locks. This is done in the same spirit as splitting - , sl
the heap atelease commands. For each threadd we define US€2—- instead ofz—a’ when the value of:” is irrelevant.
Entry(P;) = Owns(F;), Exit(P;) = {Owns(P:) | 1 < i < Is(E1, E2) is the least predicate such the(tF; , E») < 3x.(Ey =
mAi# k}U{Entry(&;) | 1 < i < n}. Thatis, for a thread ~ 22 Aemp) V (E1 # Bz A Erioa x Is(x, E»)) and denotes all of
P; we consider the entry points of its initial states to be the vari- the sttates ml V\llhllihdﬂr'etheat% Tﬁs rt]he ;‘hape of ag acych? (po?smly
ables owned by the thread and exit points to be the variables ownedcMP y) Singly-linked list, wi e head node, and the va ueo
by other threads and entry points of locks. For a thréadet thenextfield of the last node,. Note thatFE»; must be a dangling

d(P;,t, h) be defined as before, but with némtry and Exit. For pointer in a heap defined by(Ey, Ex). The adjustments to the
asta’clét and a heap, we let ' semantics of formulae for handling variables as resources are as

in [21]. The formula for the linev corresponds to the value of

We contractlz to simply z, Fi—{next E»} to E1—F>, and

Pre;(t, h) = (Az.(Vali(z), Permd, (z)), hlacp, e.n)) Q(v, L), where L is the set of locks held at by the thread to

Init; (£, h) = (\z.(Val Perm? Bl which v belongs (in this ex_ample for each CFG nad_me setl

niti(t, 1)] (Az.(Vale(z), Permy, (2)), hlaces em) can be determined syntactically). The resource invariant associated
Fors € D we define with the lock¢ is Lfirst, Llast | Is(first, last). We omitted formulae

Prei(s) = {Pre;(t,h) | (t,h) € s}, Pre;(T) =T, for some program lines to conserve space. |

Init;(s) = {Init;(¢, h) | (¢, h) € s}, Inits(T) =T,

5. Instantiating the framework

if for each(¢,h) € . .
(t,h) €5 By instantiating the framework for thread-modular analyses pre-

(wiZydom(Pre;(t, h))) W (Wi=dom(Init;(t, h))) = dom(h), sented in Section 3.3 with the concrete domain defined in Sec-
wheredom(t, h) = dom(h) andPre;(s) = Init:(s) = T oth- tion 4.1, anq abstract domain and transfer functions from differ-
erwise. The latter case corresponds to the situation when we are®nt Sequential shape analyses we can get different thread-modular
unable to split the initial states using the definitionsEatry and shape analyses. In this section we present an instantiation of the
Exit above. framework on which our implementation is based and outline two

Since the transfer function- and functionsLocal;, Frame; other instantiations. Their design follows the fixed-point charac-

Pre;, andInit; are monotone, by Tarski's fixed point theorem the terization of resource invariants presented in Section 4.2, i.e., the
functional F* defined in Figure 5 given the instantiations above analyses split the heap on releasing a lock by computing (an ap-
always has least fixed poir(@, I). It is not difficult to show proximation of) reachability between entry and exit points. We first
that Local; and Frame; defined above satisfy (6) arfere; and note an important property of thread-modular shape analyses ob-
Init; defined above satisfy (7). Hence, from Theorem 1 it follows t_alnec_i by instantiating the framework with the_concret_e domain de-
that (Q, I) over-approximates the concrete semantics (as defined finéd in Section 4.1—they detect data races, i.e., having a data race
in Figure 3) and provides a valid fixed-point characterization of N the program results in the analysis signaling a possible bug.
resource invariants for a class of heap-manipulating programs. 51 Data race freedom
tEhxamdee. Thedprogramdln Figure 9 is adaptfc_ad from [13]' TW% Suppose we are given a thread-modular shape analysis obtained
réads—a producer an ba ccansdurgefrf—use |ne-gra:j|n§ syne erTrom an instantiation of the framework of Section 3.3 in which the
F'Zkat('jo? tto \?cc_:egls ;_n ltm ?;fn te . L:tertLep;QS$nte yt_a T'”g Y-concrete separation domain is equal to the domain defined in
Inked fist. varlablesiirst andlast point to the Tirst, respectively, Section 4.1. Thus, we assume given an abstract separation domain

last element of the list. Variable is a Ioca_ll variable of the con- D', a concretization functiony, abstract transfer functionﬁé,
sumer,y of the producer. Théast element is a dummy node. The : # § § o '
and functionsLocal;, Frame;, Pre;, andInit;. We fix a program

producer adds a portion to the buffer by placing that portion in the ¢ i - . :
datafield of last, then allocates a new cell, and links that cell into N the programming language introduced in Section 4.1 and let
q be least fixed point of the functiond (Figure 3) that defines

the list making it thelast (and dummy). Removing a portion re- ;
sults in a value being read from thiata field of the first node, the concrete semantics of the program. We prove that the success
of the thread-modular shape analysis on the program implies that

disposing this node, and movitfigst along the list by one. When X
the list is of length oneast and first are equal, and this corre- the program has no data races (both on stack variables and on

sponds to an empty buffer; it is in this case that synchronization N€ap cells). The analysis succeeds if the fixed Pt I%) of the

is necessary. In this exampiiatry (¢) = {first}, Exit(¢) = {last}, functional F* (Figure 5) that def_ln_es its result is such that for every
Owns(produce) = {last y}, andOwns(consumey = {first, z}. nodev and every set of lockg it is the case thaQ*(v, L) C T
Figure 10 defines a fixed point of the functional introduced above. and for all locks¢; it is the case thaf’ = T. We denote this

We use separation logic formulae to denote elements of the do-with (Q*, I*) = T. In other words, a possible error found by the
main D (in fact, the formulae in Figure 10 represent an outline of analysis is denoted by the topmost element in the abstract domain.
a proof in concurrent separation logic). The only deviation from This requires us to put an additional constraint on the abstract

1 struct ListEntry 9 consumef) { 26 produce() { 36 main) {
2 10 while (true) { 27 while (true) { 37 last= newListEntry,
3 ListEntry* next 11 x = first; 28 last-data= producd); | 38 first = last
4 intdata 12 while (true) { 29 y = new ListEntry, 39 startThread&consumey,
5 } 13 acquire(£); 30 last—next= y; 40 startThread& produce);
6 14 if (first!=last) { 31 acquire(4); 41 }
7 Locke: 15 first = first-next 32 last = y;
8 ListEntry* z, y, first, last 16 release/); 33 releasé’);
17 break; 34
18 } else{ 35 }
19 releasd’();
20
21
22 consumér—data);
23 deletex;
24
25 }
Figure 9. Example program
[Line | Local state l DEFINITION 4 (Data race)The program has a data race if for
10 [«, Lfirsti- emp some locatiorfvs,, vm), admissible locksetl, . .., L), and
11 | =, LfirstiF emp state(t,h) € q(vi,...,vm,L1,...,Lm) C T there exist CFG
13 | o, LfirstIF = = first A emp edges(vi, C1,v1) € E; and (v2,Ch,v3) € Ej (i # j) labeled
14 | a,first, Llastir @ — firstA Is(first, lasy with sequential commands; and C> such thatCy,t,h % T,
16 | a,first, Zlasti- z—first« Is(first, last) C2,t,h ot T andCr >,y Co.
17 | = %f”Stl‘F e first , _ THEOREM2 (Data race freedomBuppose thatQ?, I*) is a fixed
19 | afirst glastiF first = lastA 2 = firstA Is(first, last) point of the functionalF* obtained from an instantiation of the
20 | =, Gfirstic x = first/\ emp framework from Section 3.3 with the concrete domain from Sec-
21 | w, firstl- z = first A emp tion 4.1 and a concretization functiensatisfying (8). I{Q*, I*) C
23 | =, Sfirst - w—first T, then the program has no data races.
24 | =z, %first I- emp))
28 | y, Llastir last—_ The proof appears in Appendix B.
1
30 | v, plastiflast>- x - 5.2 Thread-modular shape analysis with separated heap
81 |y lastitlastoy « yo- abstractions
gg % :aSt’ %f!rSt - ls(ErSt’ lash « I?Sb_)y i We define a thread-modular analysis based on a sequential shape
y, last, Sfirst-y = lastA (Is(first, last) * last—.) vsis in which ab db ion loai
30 |y Tlastir lasto analysis in which abstract states are represented by separation logic
37 I’ 2 first Tast-em formulae. The underlying sequential analysis is specialized for
35 ,y,f_ J P handling doubly-linked lists and is similar to the one of [9].
x, y, first, last IF first = last A last—_ . . : .
The abstract domaif* is the domain of sets of separation logic
- . _ . : _ ~ formulae from the subset defined in Section 2 (Figure 2) and ex-
Figure 10. The fixed point defined by the fixed-point characteri- tended to handle variables as resources as described at the end of

zation for the program in Figure 9. Results for some lines of the

program are elided.

domain: we require that

Let accesses(C, t, h), respectivelywrites(C, ¢, h) be the set of
variables and locations that the primitive sequential comm@nd

Vse D' q(s) =T =>s=T.

Section 4.2. A special elemefte D* denotes an error. The order
on the domain is subset inclusion with being the topmost ele-
ment. The concrete domain is the domain from Section 4.1 mod-
ified in the obvious way to account for multiple field selectors in
structures. The concretization function is defined following the se-
mantics of separation logic formulae. The operation of separate
combinationt on the abstract domain is just separating conjunction
«x lifted to the sets of formulae. Transfer functions are similar to
those presented in [9, 12], but adapted for handling doubly-linked
lists rather than singly-linked lists. Functiobscal?, Frame?, Pre?,

may access (i.e., read, write or dispose), respectively, write to or and|nit? mirror their concrete counterparts defined in Section 4.2.
dispose, when run from the stgte h).

DEFINITION 3 (Interfering commandsPrimitive

quential

commands C;

and C»

or writes(C1, t, h) N accesses(Ca, t, h) # 0.

Given this formulation of interference, the usual notion of data

races is formulated as follows.

interfere with each
other when executed from the statg,h), denoted with
C1) Co, if accesses(Ch,t, h) N writes(Ca,t,h) # 0

Their implementation is similar to the implementation of the oper-
ations used in interprocedural shape analysis with an abstract rep-
resentation based on separation logic [12] to split the abstract heap
at a procedure call (functioniscal and frame in [12]). The dif-
ference with respect to the concrete operations is that instead of
computing reachability precisely in the concrete, we compute its
approximation—reachability in the formula as defined in [12]. The
analysis performs the sequential shape analysis of the initialization
code to obtain an abstract preconditiore’ of the program. The
reader may now revisit the example in Section 2 to get the idea

of how the analysis works. Note that to simplify presentation we Threads 3 6 9 12 15 18
elided the discussion of treating variables as resources in the analy- Time(sec) | 11.4 | 27.7 | 50.3 | 79.9 | 118.7 | 170.7
sis while presenting the example.

We note that in situations when all of the heap cells in the Figyre 12. Results of testing the tool on programs with varying
data structure protected by a lock are reachable from some set ofy mber of threads
program variables, the sets of exit points are empty and the set of
program variables protected by a lock forms a reasonable guess
for the set of entry points associated with the lock. The set of
entry points can then be inferred using, e.g., tools (both static and
dynamic) for analyzing correlations between locks and variables
that determine the set of locks that are held consistently each time
a variable is accessed [22, 25, 5].

threads that are present in the code. In all cases we let the sets of
exit points for all locks be empty. The tool found bugs in three
programs and proved that the rest of programs are memory-safe, do
not leak memory and are data race free. In each case the analysis
converged within a few iterations. We have not encountered any
false bugs in our experiments. The bugs found by the analysis
)))) _ . were due to accesses to data structures not protected by locks and
Distefano et al. [9] present a shape analysis for singly-linked lists in \would manifest themselves as dereferencing a dangling pointer or
which abstract states are represented by separation logic formulaeg memory leak.
The construction of a thread-modular shape analysis that uses [9] To speed up convergence to a fixed point in our implementation
as the underlying sequential analysis is done in the same way as dewe use a non-standard widening operator [8, 4] that eliminates re-
scribed in Section 5.2. Unlike the domain presented in Section 5.2, dundant formulae from sets of formulae representing abstract states
the domain from [9] is finite provided the number of program vari- ysing a prover for entailment between separation logic formulae
ables is bounded. Hence, the corresponding thread-modular analysjmilar to the one described in [1]. The proof of Theorem 1 can be
sis is always guaranteed to terminate, which is not the case for theadjusted to ensure the soundness of the analysis using the widen-
analysis presented in Section 5.2. _ ~ing operator. Due to the use of the non-standard widening, in most
Lev-Ami et al. [16] present a shape analysis that handles a wider cases the final number of states per program point was 1 or 2.
range of data structures including singly- and doubly-linked lists To assess the scalability of our shape analysis we took program
and binary trees. Abstract states in the analysis are represented by and duplicated the code of threads in it knowing that the analyzer
shape graphs. To define functiomcalff, Frameg, Preg, andlnitg will not realize that the threads are duplicates. The results are
for this abstract domain we have to be able to split shape graphspresented in Figure 12. As can be seen from the figure, we do not
creating dangling pointers across splittings. The abstract represen-observe the analysis being exponential in the number of threads.
tation of [16] does not allow dangling pointers, but can be ex-
tended [15] so that it is suitable for us in a restricted case in which
the set of exit points for each lock is empty and each stack vari- 7. Related work

able is owned by only one process or resource (i.e. Bety and The shape analysis for concurrent programs presented in [26] han-
Owns are pairwise disjoint). More precisely, as the concrete sepa- gles unbounded numbers of locks (in the heap) and threads but re-
ration domain we again take the domain from Section 4.1. The ab- jies on abstracting program interleaving and thus does not scale
stract domain is represented by a topped powerset of shape graphgye|l. A number of analyses have been developed to detect races in
extended to a_llow spgcia]nusable poir_ltersThese are pointers multithreaded programs, both automatic (e.qg., [25, 5, 18, 22, 17])
such that no information about them is preserved by the analy- and requiring user annotations (e.g., [10, 3, 14]). To the best of our
sis and dereferencing them results in an error. Adding them pre- knowledge all of the automatic tools are either overly imprecise or
serves the finiteness of the domain. The operation of separate comynsound in the presence of deep heap update. The analyses that
bination is the union of shape graphs. Functibpsalf, Frame!, require annotations, which are usually based on type systems, pre-
Pre?, andInit? are defined following their concrete counterparts in clude ownership transfer; besides, the annotations required by them
Section 4.2 using reachability in shape graphs. Since we assumeare often too heavyweight. In contrast, our analysis handles own-
empty sets of exit points, there may only be two kinds of dangling ership transfer and requires lightweight annotations that can be in-
pointers: dangling pointers resulting from ttieletecommand and ferred by existing automatic tools. Some of the techniques for race
pointers from the part of the heap computed:’mymef to the part detection (including [22, 25, 5]) provide information about which

of the heap computed blyocal?. Both of these kinds of pointers ~ locks protect which variables. Such techniques are complimentary

can be modeled in the abstract representation by unusable pointersto ours—they can be used to discover entry points for resource in-
variants needed by our analysis.

: - Our method for constructing thread-modular shape analyses is
6. Implementatlon and eXpe”mentaI results inspired by concurrent separation logic [19], which adapted the
We have implemented the thread-modular shape analysis describeddea of resource invariants to heap-manipulating programs. Here
in Section 5.2 in a prototype tool and applied it to multithreaded we use this idea in the context of program analysis. However, it is
heap-manipulating code from Windows device drivers. The results important to note a difference between the approach we are taking
from our experiments are presented in Figure 11. Tests were per-in this paper and the approach that is taken in concurrent separation
formed on a 3.4GHz Pentium 4 PC. In all of our experiments the logic. In concurrent separation logic resource invariants have to be
maximum memory usage by the tool was 22MB. The sizes of ac- precise—informally, they have to unambiguously pick out an area
tual C code (without comments, irrelevant definitions, etc.) that was of heap; see [19] for a formal definition. The reason is that having
analyzed for examples from Figure 11 ranged from 50 to 300 LOC. imprecise resource invariants leads to the possibility of choosing

Each program we attempted to verify consisted of 2-6 threads different splittings of the heap atleasecommands in a proof,
representing concurrently executing dispatch routines of device which makes the conjunction rule of Hoare logic unsound. Here
drivers that performed different operations on doubly-linked lists. the determinism of heap splittingsrateasecommands is enforced
The precondition of each thread was just the empty heap. Hence,by using deterministic functionkocal, and Frame;. Hence, in
according to the note at the end of Section 3.3, the results of our analysis we can compute resource invariants without worrying
our analysis are also valid for an unbounded number of copies of about their precision and still keep the analysis sound.

5.3 Other instantiations

10

Test 1 2 3 4 5 6 7

9 10 11 12 13 | 14 15 16

Time(sec) | 2.2 | 11.7 | 34| 42| 35| 6.6 | 8.6

13.3

69| 66| 27.2| 286 | 9.7 | 53 | 34 | 53

Bugfound | No | No | No | No | No | No

No No

No | No No No No | Yes | Yes | Yes

Figure 11. Results of the application of the tool to multithreaded code from Windows device drivers

Previous work [6] presented a fixed-point characterization of re-
source invariants for integer programs with semaphores in the case

Analysis and Construction of Systemslume 3920 oL NCS pages
287-302. Springer, 2006.

when programs have no shared variables. This paper is the first, to[10] c. Flanagan and S. N. Freund. Type-based race detection for Java.

the best of our knowledge, to present a fixed-point characterization

of a class of resource invariants for heap-manipulating programs.

8. Conclusion

We have described a new analysis designed to eliminate the consid-
eration of interleavings for programs with deep heap update while
preserving soundness and precision. Our analysis is able to estab-
lish that the program is memory-safe (i.e., it does not dereference

In PLDI'00: Programming Languages Design and Implementation
pages 219-232. ACM Press, 2000.

[11] C. Flanagan and S. Qadeer. Thread-modular model checking. In
SPIN’03: Workshop on Model Checking Softwarelume 2648 of
LNCS pages 213-224. Springer, 2003.

[12] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape
analysis with separated heap abstractionsSA$'06: Static Analysis
Symposiunvolume 4134 oLNCS pages 240-260. Springer, 2006.

heap cells that are not allocated), does not leak memory and doesl13] A. Gotsman, N. Rinetzky, J. Berdine, B. Cook, D. Distefano, P. W.

not have data races (including races on heap cells). The analysis
handles low-level language features including non-lexically scoped

O’Hearn, M. Sagiv, and H. Yang. Abstract interpretation with state
separation. In preparation, 2007.

and nested locking, and memory disposal. Our solution works par- [14] D. Grossman. Type-safe multithreading in Cyclone.TirDI'03:

ticularly well in situations in which all of the heap cells in the data

structure protected by a lock are reachable from some set of pro-

gram variables as it is the case, e.g., in systems code.

Acknowledgements. We would like to thank Cristiano Calcagno,
Dino Distefano, Peter O'Hearn, Tal Lev-Ami, Stephen Magill, Ro-

man Manevich, Matthew Parkinson, Andreas Podelski, Zvonimir
Rakamaric, Ganesan Ramalingam, John Reynolds, Noam Rinetzky,
Viktor Vafeiadis, Hongseok Yang, Jian Zhang, and the anonymous
reviewers for comments and discussions that helped to improve the

paper.

References

[1] J. Berdine, C. Calcagno, and P. O'Hearn. Symbolic execution with
separation logic. IAPLAS’05: Asian Symposium on Programming
Languages and System®lume 3780 ofLNCS pages 52-68.
Springer, 2005.

R. Bornat, C. Calcagno, P. W. O’'Hearn, and M. Parkinson. Per-
mission accounting in separation logic. ROPL'05: Principles of
Programming Languagepages 259-270. ACM Press, 2005.

[2

—

13

—_

C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA'02: Object-Oriented Programming, Systems, Languages,
and Applicationspages 211-230. ACM Press, 2002.

[4] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond

[l

reachability: Shape abstraction in the presence of pointer arithmetic.

In SAS’06: Static Analysis Simposiuvwolume 4134 oL NCS pages
182-203. Springer, 2006.

[5] J. Choi, K. Lee, A. Loginov, R. O'Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. IRLDI'02: Programming Languages
Design and Implementatippages 258-269. ACM Press, 2002.

6

—

ACM Trans. Program. Lang. Sys2(3):338-358, 1980.

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. I®?OPL'77: Principles of Programming
Languagespages 238—-252. ACM Press, 1977.

[8] P.Cousotand R. Cousot. Abstract interpretation framewdaidstnal
of Logic and Computatiqr2(4):511-547, 1992.

[9] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. TACAS’06: Tools and Algorithms for

[7

—

11

E. Clarke. Synthesis of resource invariants for concurrent programs.

Types in Languages Design and Implementatiages 13-25. ACM
Press, 2003.

[15] T. Lev-Ami. Personal communication. 2006.

[16] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape
analysis with fast and precise transformers.Ci#vV’'06: Computer
Aided Verificationvolume 4144 oL NCS pages 547-561. Springer,
2006.

[17] M. Naik and A. Aiken. Conditional must not aliasing for static race
detection. IPOPL’07: Principles of Programming Languagemges
327-338. ACM Press, 2007.

[18] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. InPLDI'06: Programming Languages Design and
Implementationpages 308-319. ACM Press, 2006.

[19] P. W. O’'Hearn. Resources, concurrency and local reasoning. In
CONCUR’04: International Conference on Concurrency Theory
volume 3170 oLNCS pages 49-67. Springer, 2004.

[20] S. Owicki and D. Gries. Verifying properties of parallel programs:
An axiomatic approachCommun. ACM19(5):279-284, 1976.

[21] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource
in Hoare logics. InLICS'06: Logic in Computer Scienceages
137-146. |IEEE Press, 2006.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: context-sensitive
correlation analysis for race detection. RFDI'06: Programming
Languages Design and Implementatipages 320-331. ACM Press,
2006.

[23] J. Reynolds. Separation logic: A logic for shared mutable data
structures. InLICS’02: Logic in Computer Sciencpages 55-74.
IEEE Press, 2002.

[24] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. IBAS’05: Static Analysis Symposium
volume 3672 oLNCS pages 284-302. Springer, 2005.

[25] S. Savage, M. Burrows, G. Nelson, P. Soblvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. on Comp. Sysil5(4):371-411, 1997.

[26] E. Yahav. Verifying safety properties of concurrent Java programs
using 3-valued logic. IFPPOPL'01: Principles of Programming
Languagespages 27—40. ACM Press, 2001.

[27] H. Yang and P. W. O’'Hearn. A semantic basis for local reasoning.
In FOSSACS’02: Foundations of Software Science and Computation
Structuresvolume 2303 oL NCS pages 402—-416. Springer, 2002.

A. Proof of Theorem 1 (Soundness)

Letqg € D be defined as follows: for each locatidm, . . .
and admissible locks€L, ..., L)

(8, @)z (}PQL 1))

(whereL = L, U...UL,,) and for each locatiofws, . . . , vn,,) and
inadmissible locksetL1, ..., Lm), G(v1,...,Vm, L1,...,Ln) =
L. We show thatF'(§) C ¢. By Park induction principle this
implies thatg = Ifp(F’) C ¢, which is required.

First of all, from (5) and (7) it follows that

(F((j))(Starth EERR 7®) C
G(starty, ...

,Um)

q(’l)l,...,’l)m,Lhu.,Ln)

start,,, 0, ...
,starty,, 0, ...

,0).
According to the definition of the functiondl’ (Figure 3), it is

now sufficient to show that for all location{s, ..., v;,...,vm),
admissible locksetéL1, ..., L), and edge$vy, C,v;) € E itis
the case that
gé(q(vl7' b 7U?7 e 7U’m)7L17 .. '7L77L) E
(j(vl,...,vj,...,vm,Ll,...,Lm). (9)

There are three cases corresponding to the type of the comfand
Case 1C'is a sequential commantVe have to show that

fc((j(vl,...,U?,...,vm,Ll,...,Lm)) C
q(vh...,’U]',...,’Um,Lh...,Lm). (10)
LetL=LyU...ULp,s1 = Q(UJO-,L]'), s2 = Q(vj;, Lj), and

-0 ewm|i(er).
1§i;§j7n, L; &L

Then (10) is equivalent tdc (v(s#s1)) C (st s2). Since(Q, I)
is a fixed point of the functional™, by the definition ofF* (Fig-
ure 5) we get

fh(s1) C so. (12)
Then, sincex and~ are monotone,

fely (Sﬁ81)) fely ()*’Y(Sl)) by (3)
(s) * (7(81)) by (2)

- 7(5) *7(fE(s1)) by (4)

= (st fE(s1)) by (3)

Ey(sts2) by (12)

Case 2.C' is acquire(s). We can assume tha, € Lj,
otherwise the left-hand side of (9) is. Thus, we have to show
that

’U?,... ,Lj\{fk},...,

(j(’l)l,..., Lj7...,Lm). (13)
Let s be defined by (11) witht = L U ... U L,, and let
s1 = Q(v),L; \ {€}) andsy = Q(vj, L;). Since the lockset
(L1,..., L) is admissible andy, € L;, (13) can then be rewrit-
ten asy(sts1 k) = v(sfs2). From the definition of the func-
tional F* we gets; § I, C s». The required then follows from the
monotonicity off and~y.

Case 3.C isreleasd/;). We can assume théf, ¢ L;, other-

wise the left-hand side of (9) is. Thus, we have to show that

'm) C
7Lj7 . ~7L'm)

q‘(vl,...7 ,Um,L1,.,, Lm);

vj,...,vm,Ll,...,

L;u {fk}

7v'm7L17' o

0
7’Uj7"-7v7n7L17"

(j(ul,. ..

(j(vl, e
(14)

yVjyenn

12

and

0
JVjseeyUm, Ly , L) C

q(Uh... ,Lj,...,Lm). (15)
We first prove (14). Let be defined by (11) witl. = L, U. ..U
LU {Ek}, S1 = Q(’U?, Lj U {Zk}) andss = Q(’Uj, Lj). We can
assume that the locks@ty, ..., L;U{l}, ..., Ly) is admissible
as otherwise the left-hand side of (14)lis Sincel;, ¢ L;, (14)is
then equivalenttey(st s1) C y(st s2 f I.). From the definition of
the functionalF* we getlocaly(s1) C sz andFramey(s1) C I.
From the monotonicity of it follows that

Lj,...

,’Um,L1,...

(j(’Ul,. ..

s Ugyeee

Local,(s1) § Frameg(s1) C saff Ik. (16)
Then, sincex is monotone,
Y(sts1) =(s) xv(s1) by (3)
C v(s) * y(Localk(s1) # Frameg(s1)) by (6)
C y(s) *v(s28 Ix) by (16)
=(s§s281k) by (3)

which proves (14). We now proceed to prove (15). £ be defined
by (11) and lets; = Q(vY, L;), s2 = Q(v;, L;). Then (15) is
equivalent toy(sfs1) C (st s2). From the definition of the
functional F* we have thats; T s,. The required then follows
from the monotonicity ofy ands.

So, in all the cases (9) is fulfilled, which implies the statement
of the theorem. |

B. Proof of Theorem 2 (Data race freedom)

Suppose the contrary: there exist a locatidn, ..., vm),
an admissible lockset(Ly,...,Ly), a state (¢,h) €
q(’Ul,.,,,’Um,Lh...,Lm), CFG EdQES(UhCl,’Uﬂ) e FE;
and (v, C1,v5) € E; (i # j) labeled with sequential com-
mandsC; and Cy such thatCy,t,h % T, Ca,t,h o+ T and
Ch I>Q<t7h) Cs. Lets; = Qﬁ(’l}i,Li), So = Qﬁ(’L)j,LJ‘), and

so=| ® Q' Ly |t (® I}i) :
1<k<m, £, €L1U...ULp,
ki, k#j
Then by Theorem 1 and (3¢, k) € v(so) *7y(s1) *7(s2). Hence,
(t,h) = (to, ho) * (t1, h1) * (t2, ho), 17)
where
(to, ho) € y(s0), (t1,h1) € ¥(s1), (t2,h2) € y(s2). (18)

Since(Q*, I*) = T, from the definition of the functional™
(Figure 5) it follows that

Fo(s) T T, fE,(s2) T T (19)
Therefore,
Joi(ti, ha) E fo,(v(s1)) by (18)
C y(fE, (s1)) by (4)

CT by (8) and (19)

So, fo, (t1, k1) C T and, analogouslyfe, (t2, h2) T T. Hence,
Ci,t1,h1 % T and Ca,ta, ha + T. From this and the fact
thatCy a5y C2 using the definition of and transfer functions
for sequential commands given in Section 4.1 we easily get that
(t1, h1) * (t2, h2) is undefined, which contradicts (17). The intu-
ition behind this is that fronC, t1, h1 & T andCa, t2, he o T

it follows that both(¢1, k1) and(t2, h2) should have the full per-
mission for the same variable or location accessed'byandCs,
which makes the stat, h1) * (t2, h2) inconsistent. |

