Modelica™ - A Unified Object-Oriented
L anguage for Physical Systems M odeling

LANGUAGE SPECIFICATION

Version 1.3 December 15, 1999

Modelica™ is a trademark of the "Modelica Design Group".

Modelica Language Specification

cContents

1 gL 7o 13 ot [o OSSPSR PSSP 5
11 OVEIVIEW OF MOUBIICA.....eevieeeiirireees e 5
12 SCopPE Of the SPECITICALIONeeiee et e e e e etese e beeteeneesnnas 5
13 DEfiNitioNS @NA QIOSSAIYccuveiieiie ettt e e s e st esteeteeaeesaeesseeste e teenteeseensesnsenraenseens 5
2 Koo (< o= Y 1= P 7
21 LEXICBl CONVENTIONS.ccvieeeeirereeiesre sttt s r e r e e s r e se bt er e ne e e nene b e sr e e erenne e erenreneas 7
22 LC =001 0T TSP PP SORPPRTRIN 7
221 MOTE! AEFINITION. ...ttt b bbb b s nnenenes 7
222 ClaSS AEFINITION ..ottt bbbt b bt e et st e et b e 7
223 EXEENOS. ...ttt bbb bR bR bR bt b et b e st n e n s 8
224 COMPONENT CHAUSE......cvieetit ettt bbbttt b ettt e et b e 8
225 IMOTITICELION. ...ttt bbbt b bbb bbb ekt sb st b et bennenes 8
2.2.6 0 7o 9
227 EXPIESSIONS ...t ettt sttt ettt et e st et e e e te et e s e e saeesae e teeateeaeeera e te e te e teeneeanneenteeneennaenreans 10
3 MOTEI I CBSEIMAINLICS......cvcveeeeeteee st r et r e e nr e 13
31 FUNOBMENTBIS. ...t e et et r e et r e et r e nn e r e 13
311 Scoping and NAME TOOKUPeeiieeieeiece ettt esreeereennas 13
3111 PAIENES ...t e e e 13
3112 SEALIC NAME TOOKUP ...ttt ettt bbb s sbe e 13
3113 DYNamicC NAME LOOKUPciviieiiitiieste et 14
312 Environment and mMOdifiCaLION. ..o e 15
3121 ENVITONIMENT ...ttt b bt bbbt se et e e b nnenes 15
3122 Merging of MOIfICALTIONS..........ciiieirieeere e 15
3.1.23 SINGIE MOUITICALIONevveetietiee e et ee e sreesaeesaeennesneeeneennennreens 17
3124 INSEANLIAETON OFOEN......eceeetieceeereseeee et sr e n s 17
3.1.3 Subtyping and type EQUIVBIEINCE.eccueiee e csie e e eee st e ste e ae e s e e saeeae e e ssaesseenseeennas 17
3131 SUDLYPING OF CIASSESuvieii ettt sttt e etesaesaesaeesneesneennennreens 17
3132 SUbLYPIiNG Of COMPONENLES......cciuieiieiieiieee st e eese e ree e e sreesteeseeseessaesteesseetessesneesnnesnrenss 17
3.1.33 Y 0 L=T= o (U RY = = ool S 17
3134 TYPE TUENLITY ...ttt et b e ettt e ettt e et eb e et b e sa et b s e e e ebesre e 18
314 Classes 0N EXLEINAL TIIES......c.ciieiiere bbb 18
3.2 DECIAIALIONS ...ttt et bbbt bt b e s e Rt b e a e bt bbb et b e 19
321 COMPONENT CHAUSE......ceeeecteeeet ettt b bbb bt bbb s s bbb nnens 19
322 VA aDIHITY PrEFIX ..ot bbb e 19

Modelica 1.3 2

Modelica Language Specification

323 01225 o] USSR 21
3.24 VECOrS, MatriCeS, QN ATTAYS.cuereerierieiterieseeteeseeste e ste e sresseseeseeseesseseessessesseeseeeenseseessessessens 22
3241 ATTAY DECIAIALIONS ...ttt ettt b e et b e et se e b sre e 22
3242 Built-in FUNCions for Array EXPreSSIONS..........ooeeririeirinieesiesieesesie st 24
3.24.3 Vector, Matrix and Array CONSITUCLOIS.......ccuieeiereerenieseeseseereeseeseeseeseeseessesseseeseeseeseeseeseens 25
ATTAY CONSIFUCTION ...ttt sb b nn s 25
ATTAY CONCALENGALTION ...ttt bbbt bt be e e 25
Array Concatenation along First and Second DimMENSIONS..........ccccvecveeeeneeseeneesescee e 26
VECOr CONSITUCTION.......eueeeiieeecrt et 27
3.244 ATTAY BCCESS OPEIBLONveiiteieteeitieeieessteeetes s beeesbeessbeesbe s s beeebeesbeeebeesbeesbeesbaeenbeesnnteesnreas 27
3.245 Scalar, vector, matrix, and array operator fUNCLIONS..........ccceveeierie s 28
NUMENC TYPE ClaSS....cceeeee ettt ae e st be et e esnaeste e re e eeeeeennas 28
Equality and Assignment Of type ClaSSES.......ccveiiereice e 28
Addition and Subtraction of NUMEric type Classes.........cccvvrerineiniree e 28
Scalar Multiplication of NUMENIC tYPE ClASSESc.civiveiriirieirieee e 28
Matrix Multiplication of NUMENC tYPe ClaSSES.........covveuiririeerie e 29
Scalar Division of NUMENIC tYPE ClASSES.......c.evireeiirierieiesie ettt 29
Exponentation of Scalars of NUMENiC tyPe ClaSSES......c.covveirereierereese e 29
Scalar Exponentation of Square Matrices of NUMEric type Classes........covveveererecenienees 29
S Lo o] o 1= =1 o] o IS 29
(R E (0] 7= 0 o 1= = (] = S 30
FUNCEIONS. ...ttt ettt r e 30
000 £ = YT PR 31
325 Final element MOiTiCaIONcoviireiiircs s 31
326 Short Class AEfiNITION.couiiiiec bbb 32
327 Local ClassS efiNItIONcoceiiiiiiiere bbbt 32
328 EXEENOAS CLAIUSE. ...ttt ettt b et b e et b e se bbb et b e sa et ebese e e ebenneneas 33
329 REECTAIALION ...ttt b e et b et b e e bt bese b e e ebenne e 34
33 BEQUEBLIONS ...ttt b e b et b e et b e et bt a e b e ae bbb et b e 35
331 BEQUELION CLAUSE ...ttt b et b bbbt b e bt b e s b e b e e e ebenne e 35
332 [T CTAUSE. ...ttt r e e r e e 35
3.33 FOF ClAIISE...... et et r e et r e et r e ne et r e ne et r e se e e er e nr e e renre e 35
3.34 WWNEN CLAUSEottt et ettt e et r e et r e et renn et r e 36
335 AASSEIT ettt h e R R e e R e e n R e nRe e Re e Rt e n e e n e nneennenneenreen 36
3.36 LO00]3141=" ot 1o 0TSPTSRO 37
3.36.1 Generation of CONNECLION EQUALIONScceiierierieeie e ee et see et eee e e st re e snaesseens 37
3362 RESLICLIONS.......ceeeeete ettt bbbt b bbb bbbt bbb e b b enes 38

Modelica 1.3 3

3.4
3.5
3.6
3.7
3.8
39
391
39.2

5.1
5.2

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3

Modelica Language Specification

FUNCEIONS ...ttt ettt r e e bt r e e b s r et r e nn e r e 38
COdE OPLIMIZALIONSeeeeeetereeieste sttt ettt et b e b e bt b se ekt sbeseebesbeseebe s b e e ebenneneas 39
Events and SYyNCAMONIZALION............ccuiiieiie sttt b 40
RESITCIEA ClASSES ...ttt ettt b e bt b e bbbt b et b et bttt n e 42
Variabl@ AIIOULES. ..o bbb e 42
INtriNSIC liDrary fFUNCLIONAIITYcoveiriieiee bbb 43
BUIE-IN Variabl @ tIME ...t et et e b e e b e sne e 43
MoOdeliCaDUIIT-IN OPEIALOIS.eecieceeecee ettt e e s e e sreesaeeseenaesnaenreens 44
Mathematical description Of HYDIA DAES..........ooieiieece ettt s 48
UNIT EXPIESSIONS ... eeiiteeieeteeeteeteesteesteeste e e s eeseesaeesaeesaeeseeaseasseaseeaseesseesteensesseesaeesaeesseeseenseenseaneensannrenns 50
The SyntaxX Of UNIt EXPIrESSIONS.......ccveieerieeieiiesieeseeseesteeteeeesree s e e te e e esesseesseesaeesseenseensesssessenssenns 50
T 01 0] =S 51
External fUNCLION INEEITACEocuiireec e 52
OVEIVIEIW ..ottt ettt b et e et bt ekt b et eh e s H et e bt A Eea e eb e s e et eb e se e e ekt sbeneebesb et et e seeneebenaenea 52
ATgUMENE tYPE MADPING ..vevereeieetereeseetesseeete sttt sttt e st st s st st e e e st s b e b e st s b e b eae st e b et e b et e s enenbennene 52
SIMPIE LYPIES. ...ttt bbb bbb bbbt nenes 53

N 1= £ PP PR PPN 53
RECOITS ...ttt b et b bbbt b e s b et bt s b et e bt s b et e bt sb et et et e se et ebenbe e 55
RELUMN LY MBPPING. ..+ttt sttt sttt sttt bbb bt b s bt e b sb et eb et e e e b e 55

N =S o S 56
T 01 0] =S 57
Input parameters, FUNCLION VAIUE...........cceeiieie ettt naennee s 57
Arbitrary placement of output parameters, no external function value...........ccccoccveevecvvcevnenen, 57
External function with both function value and output variable...........ccccceveevveeve e 57
MOdelicastandard [TDFAIYccooireeie bbb b 59

Modelica 1.3 4

Modelica Language Specification

1 Introduction

1.1 Overview of Modélica

Modelicais alanguage for modeling of physical systems, designed to support effective library development and
model exchange. It is a modern language built on non-causal modeling with mathematical equations and object-
oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scopeof the specification

The Modelicalanguage is specified by means of a set of rules for tranglating a model described in Modelicato
the corresponding model described as aflat hybrid DAE. The key issues of the trandation (or instantiation in
object-oriented terminology) are:

* Expansion of inherited base classes

» Parameterization of base classes, local classes and components

* Generation of connection equations from connect statements
The flat hybrid DAE form consists of:

» Declarations of variables with the appropriate basic types, prefixes and attributes, such as " parameter
Real v=5".

Equations from equation sections.

* Function invocations where an invocation is treated as a set of equations which are functions of al input
and of all result variables (number of equations = number of basic result variables).

Algorithm sections where every section is treated as a set of equations which are functions of the
variables occurring in the algorithm section (number of equations = number of different assigned
variables).

When clauses where every when clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number of
equations = number of different assigned variables).

Therefore, aflat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes
true).

The Modelica specification does not define the result of simulating a model or what constitutes a mathematically
well-defined model.

1.3 Definitionsand glossary

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in [], comments are set in italics.

Term Definition
Component An element defined by the production component-clause in the Modelica
grammar.

Modelica 1.3 5

Modelica Language Specification

Element Class definitions, extends-clauses and component-clauses declared in a class.

I nstantiation The tranglation of a model described in Modelica to the corresponding model
described as a hybrid DAE, involving expansion of inherited base classes,
parameterization of base classes, local classes and components, and generation of
connection equations from connect statements

Modelica 1.3 6

Modelica Language Specification

2 Modelica syntax

2.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[1] optional
{ } repeat zero or nore tines

The following lexical units are defined:
IDENT = NONDIG T { DIAT | NONDIAT }

NONDIG T = "_" | letters"a" to"z" | letters"A" to" 2"
STRING = """ { S-CHAR | S-ESCAPE } """
S- CHAR = any member of the source character set except double-quote"" ", and backslash "\ "
S-ESCAPE = "\ " | "\" " | "\2" | "\ " |
"a" | "\b" """ "W "\ " "W

DAT=0] 1] 2| 3| 4| 5] 6] 7] 8] 9

UNSI GNED INTEGER = DIG T { DIG T }

UNSI GNED_NUMBER = UNSI GNED I NTEGER ["." [UNSI GNED | NTEGER |]
[(e| E) ["+ | "-"] UNSIGNED | NTEGER]

Note: string constant concatenation "a" "b" becoming "ab" (asin C) is replaced by the "+" operator in Modelica.

M odelica uses the same comment syntax as C++ and Java. Inside a comment, the sequence <HTM.>
</ HTML> indicates HTML code which may be used by tools to facilitate model documentation.

Keywords and built-in operators of the Modelica language are written in bold face. Keywords are reserved
words and may not be used as identifiers.

2.2 Grammar

2.2.1 Modd definition

nodel _definition:
{ [final] class_definition";" }

2.2.2 Classdefinition

class_definition :
[partial]
(class | model | record | block | connector | type |
package | function)
| DENT cl ass_specifier

cl ass_specifier
string_coment conposition end | DENT
| "=" name [array_subscripts] [class_nodification] coment

composition
el enent _|i st
{ public elenment_list |
protected el ement _|ist |
equation_cl ause |

Modelica 1.3 7

Modelica Language Specification

al gorithm cl ause
}
[external [|anguage_specification]
[external _function_call 1 ";" [annotation ";"]]

| anguage_speci fication
STRI NG

external _function_cal
[component reference "="]
| DENT "(" [expression { "," expression }] ")"

el ement _|i st
{ element ";" | annotation ";" }

el ement

[inner | outer]

([replaceable] class_definition | extends_clause | [replaceabl e]
conponent _cl ause)

2.2.3 Extends

ext ends_cl ause
extends nanme [class_nodification]

2.24 Component clause

conponent _cl ause:
type_prefix type_specifier [array_subscripts] conponent |i st

type_prefix :
[flow]
[discrete | nondiscrete | paraneter | constant] [input | output]

type_specifier
name

conponent _|i st
conponent _declaration { "," conponent _decl aration }

conmponent _decl aration :
decl arati on coment

decl aration :
I DENT [array_subscripts] [nodification]

2.2.5 Modification

nodi fi cation :
class_nodification ["=" expression]
| "=" expression
| ":=" expression

class_nodi fication :
"(" { argunent list } ")"

argurent _| i st
argunent { ",

argunent }

Modelica 1.3 8

Modelica Language Specification

ar gument
el ement _nodi fi cation
| el ement _redeclaration

el enent _nodification :
[final] conponent_reference nodification

el ement _redecl aration

redecl are

([replaceable | class_definition | extends_clause | [repl aceabl e]
conponent _cl ausel)

conponent _cl ausel
type_prefix type_specifier conponent_declaration

2.2.6 Equations

equati on_cl ause
equation { equation ";" | annotation ";" }

al gorithmcl ause :
algorithm{ algorithm";" | annotation ";" }

equation :
(sinple_expression expressi on
| conditional _equation_e
| for_clause_e
| when_cl ause_e
| connect _cl ause
| assert_cl ause)

coment
al gorithm:
(conponent _reference (":=" expression | function_call)
| "(" expression_list ")" ":=" function_cal

| conditional _equation_a
| for_clause_a
| while_clause
| when_cl ause_a
| assert_cl ause)
coment

condi tional _equation_e :
i f expression then

{ equation ";" }

{ elseif expression then
{ equation ";" }

[else
{ equation ";" }

]

end if

condi tional _equation_a :
i f expression then
{ algorithm™";" }

Modelica 1.3 9

{ elseif expression then

{ algorithm";" }

[else
{ algorithm";" }
]

end if

for_clause_e :

for IDENT in expression |oop

{ equation ";" }
end for

for_clause_a :

for IDENT in expression |oop

{ algorithm";" }
end for

whi | e_cl ause :
whi | e expression | oop
{ algorithm";" }
end while

when_cl ause_e :
when expression then
{ equation ";" }
end when

when_cl ause_a :
when expression then
{ algorithm";" }
end when

connect _cl ause :

connect "(" connector _ref

connect or _r ef

| DENT [array_subscripts] [

assert _cl ause :
assert "(" expression

termnate "(" STRING{ "+" STRING} ")"

2.2.7 EXpressions

expression :
si mpl e_expr essi on

| if expression then expression el se expression

si npl e_expression :
| ogi cal _expression [

| ogi cal _expression :

logical _term{ or logical _term}

logical _term:

connect or _ref

STRING } ")"

| ogi cal _expression [

Modelica Language Specification

| DENT [array_subscripts]]

| ogi cal _expression]]

Modelica 1.3

10

Modelica Language Specification
| ogical _factor { and | ogical _factor }

| ogi cal _factor
[not] relation

rel ation :
arithmetic_expression [rel _op arithnetic_expression]

rel _op :
n <Il | " <:Il | " >Il | n >:II | - |

arithmetic_expression
[add_ op] term{ add_op term}

add_op :
n +Il | " - mn

term:
factor { mul _op factor }

mul _op :
"negn | Il/ll
factor

primary [""" primary]

primry :
UNSI GNED_NUMBER
| STRING
| false
| true
| component _reference [function_call]
| "(" expression_list ")"
| "[" expression_list { ";
| "{" expression_list "}"

expression_ list } "]"

nane :
IDENT ["." name]

conponent _reference
| DENT [array_subscripts] ["." conponent_reference]

function_call
“(" function_argunents ")"

function_argunents
expression_list
| named_ar gunent s

nanmed_argunents: [named_argunent { "," named_argument }]
nanmed_argunent: | DENT "=" expression

expression_list
expression { ",

expression }

array_subscripts

Modelica 1.3 11

Modelica Language Specification
"[" subscript { "," subscript } "]"

subscri pt
":" | expression

conment
string_comrent [annotation]

string_conment :
[STRING{ "+" STRING}]

annot ation :
annotation class_nodification

Modelica 1.3 12

Modelica Language Specification

3 Modéica semantics

3.1 Fundamentals
Instantiation is made in a context which consists of an environment and an ordered set of parents.

3.1.1 Scoping and name lookup

3.1.1.1 Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside another class
definition (the parent) precedes its enclosing class definition in this set.

Enclosing all class definitionsis an unnamed parent that contains all top-level class definitions. The order of top-
level class definitionsin the unnamed parent is undefined.

During instantiation, the parent of an element being instantiated is a partialy instantiated class. [For example,
this means that a declaration can refer to a name previously inherited through a previous extends clause.]

[Example:
class C1 ... end Ci1;
class C2 ... end C2;
class C3
Real x=3;
Cly;
class 4
Real z;
end C4;
end C3;
The unnamed parent of class definition C3 contains C1 and C2 in arbitrary order. When instantiating class
definition C3, the set of parents of the declaration of x isthe partially instantiated class C3 followed by the
unnamed parent with C1 and C2. The set of parents of z is C4, C3 and the unnamed parent in that order.]

3.1.1.2 Static namelookup

Names are looked up at class instantiation to find names of base classes, component types, etc.
For a simple name [not composed using dot-notation] lookup is performed as follows:

* When an element, equation or algorithm isinstantiated, any name is looked up sequentially in each member
of the ordered set of parents until a match is found.

For a composite name of the form A.B [or A.B.C, etc.] lookup is performed as follows:
* Thefirstidentifier [A] islooked up as defined above.
» If theidentifier denotes a component, the rest of the name[e.g., B or B.C] islooked up in the component.

» If theidentifier denotes aclass, that classistemporarily instantiated with an empty environment and using
the parents of the denoted class. The class must satisfy the requirements for a package. The rest of the name
[e.g., B or B.C] islooked up in the temporary instantiated class.

[The temporary class instantiation performed for composite names follow the same rules as class instantiation of
the base classin an extends clause, local classes and the type in a component clause, except that the

Modelica 1.3 13

Modelica Language Specification

environment is empty.]

3.1.1.3 Dynamic name lookup

An element declared with the prefix outer references an element instance with the same name but using the
prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

There shall exist at |east one corresponding inner element declaration for an outer element

reference.[Inner/outer components may be used to model simple fields, where some physical quantities, such as

gravity vector, environment temperature or environment pressure, are accessible fromall componentsin a

specific model hierarchy. Inner components are accessible throughout the model, if they are not “shadowed” by
a corresponding non-inner declaration in a nested level of the model hierarchy.]

[Simple Example:

class A
outer Real TO;

end A;
class B

i nner Real TO;

A al, az; // B.TO, B.al. TO and B.a2.TO is the sane vari abl e
end B;

More complicated example:

class A
i nner Real TI;
class B
i nner Real TI;
class C
Real TI;
class D
outer Real TI; [/
end D;
end C
end B;
end A;

class E
i nner Real TI;
class F
i nner Real TI;
class G
Real TI;
class H
A.B.C. D d;
end H
end G
end F;
end E;

class |

Modelica 1.3 14

Modelica Language Specification

i nner Real TI;
E e; // eeF.GHd.TI and e.F. Tl is the sane vari abl e
E.F.GH h; // h.d. Tl and Tl is the sane vari abl e

end |;

]

Outer element declarations shall not have modifications. The inner component shall be a subtype of the
corresponding outer component. [If the two types are not identical, the type of the inner component defines the
instance and the outer component references just part of the inner component] .

[Example:
class A

outer paraneter Real p=2; // error, since nodification
end A

class A
i nner Real TI;
class B
outer Integer TlI; [/ error, since ATl is no subtype of A B.TI
end B;
end A;

Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

function A
i nput Real u;
out put Real vy;
end A

function B /1l Bis a subtype of A
extends A
al gorithm

end B;

class C
i nner function fc = B; /1 define function to be actually used
class D
outer function fc = A;

equati on
y = fc(u); [// function B is used.
end D
end C

]

3.1.2 Environment and modification

3.1.2.1 Environment

The environment contains arguments which modify elements of the class (e.g., parameter changes). The
environment is built by merging class modifications, where outer modifications override inner modifications.

3.1.2.2 Merging of modifications

[The following larger example demonstrates several aspects:

Modelica 1.3 15

class Cl1
class Cl1

par anet er

end C11;
end Ci1;
class C2

class C21

en.d. CZl;
end C2;
class C3

Real x;

extends Ci1;
Cl1 t(x=3);
C21 u;

ext ends C2;

Modelica Language Specification

// ok, Cl1 has been inherited fromCl

/'l error,

end C3;

C21 has not yet been inherited

The environment of the declaration of t is (x=3). The environment is built by merging class modifications, as

shown by:

class Cl1
par anet er

end Ci1;

class C2
par anet er

end C2;

class C3
par anet er
par anet er
par anet er
par aret er

Real a;

Real b;

Real x1;
Real x2 = 2;
Cl x3;

Cl x4(a=4);

extends C1;
ext ends C2(b=6);

end C3;
class ¢4

extends C3(x2=22,

end C4;

11

x3(a=33),

No default val ue

Def ault val ue 2

No default value for x3.a

x4.a has default value 4

No default value for inherited elenent a
Inherited b has default value 6

x4(a=44), Cl(a=55), b=66);

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of

ext ends C2(b=6).Thisisknown asmerging of modifications. mer ge((b=66) ,

(b=6)) becomes

(b=66).

An instantiation of class C4 will give an object with the following variables:
Variable Default value

x1 none

X2 22

x3.a 33

x4.a 44

a 55

b 66

The last argument of the C3 modification shows that an inherited element (here, b=66) can be directly referred
to, without specifying its base classasin C1(a=55)]

Modelica 1.3

16

Modelica Language Specification

3.1.2.3 Single modification

Two arguments of a modification shall not designate the same primitive attribute of an element. [Example:

class C1

Real x[3];
end Ci;
class C2 = Cl(x=ones(3), x[2]=2); [/ Error: x[2] designated twi ce
class C3

class 4

Real x;
end C4;
A a(x(unit ="V'), x =5.0));
[l Ck, different attributes designated (unit and val ue)

end C3;

]
3.1.2.4 Instantiation order

The name of a declared element shall not have the same name as any other element in its partially instantiated
parent class. A component shall not have the same name as its type specifier.

The elements of a class are instantiated in the order of declaration. An element is added to its partially
instantiated parent class after the complete instantiation of the element. [For example, Real x = X, is
incorrect.]

3.1.3 Subtyping and type equivalence

3.1.3.1 Subtyping of classes

For any classes Sand C, Sisa supertype of C and C isasubtype of Sif they are equivalent or if:
» every public declaration element of S also existsin C (according to their names)
» those element typesin S are supertypes of the corresponding element typesin C.

A base classisthe class referred to in an extends clause. The class containing the extends clauseis called the
derived class. [Base classes of C are typically supertypes of C, but other classes not related by inheritance can
also be supertypes of C\]

3.1.3.2 Subtyping of components

Component B is subtype of A if:
* Bothscaarsor arrays with the same number of dimensions
» Thetype of B is subtype of the base type of A (base type for arrays)
* For every dimension of an array
* Thesizeof A isindefinite, or
» Thevalue of expression (size of B) - (size of A) is constant equal to O (in the environment of B)
3.1.3.3 Typeequivalence
Two types T and U are equivalent if:
¢ T and U denote the same built-in type (one of Real Type, IntegerType, StringType or BooleanType), or

e TandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elements typesin T are equivalent to the corresponding element typesin U.

Modelica 1.3 17

Modelica Language Specification

3.1.3.4 Typeidentity

Two elements T and U areidentical if:
T andU are equivalent,
» they are either both declared as final or none is declared final,
» for acomponent their type prefixes are identical, and

 if TandU areclasses, T and U contain the same public declaration elements (according to their names),
and the elementsin T areidentical to the corresponding element in U.

3.1.3.5 Ordered typeidentity

Two elements T and U are ordered type identical if and only if:
* TandU aretypeidentical
 IfTandU areclasses

e T and U have the same number of elements

e Thei:th declaration element of T and the i:th declaration element of U are ordered type identical

3.1.3.6 Function Type Identity

Two functions T and U have identical type if and only if
¢ T and U have the same number of input and output elements
e For each input or output element

e The corresponding elements have the same name

« The corresponding elements are ordered type identical
3.1.4 Classeson external files

Class names are automatically mapped to a hierarchical structure of the operating system. Given that A denotesa
class at global scope, the name path A. B. Cislooked up as follows.

» If Aisdefined in the current translation unit, the rest of the path (B. C) islooked up inside A.
* Otherwise, Aislocated in an ordered list of library roots, called MODELICAPATH.
If the name A isastructured entity [e.g. a directory], lookup of B. C progresses recursively in A.

If the name A is a non-structured entity [e.g. afilg], it shall contain only the complete definition of class A, and
the rest of the path (B. C) islooked up inside that entity. If the name A isastructured entity [e.g. a directory with
an optional node], the rest of the path islooked up in the node in the same way as in non-structured entity . If not
found, lookup of B.C progresses recursively in A.

[Inafilehierarchy, the nodeis stored in file package. np in the package directory].

If the node exists it shall contain a class-definition that defines a class with the same name as the structured
entity [A]. [The node typically contains documentation and graphical information for a package.]

Otherwise the lookup fails.

[On a typical system, MODELICAPATH is an environment variable containing a semicolon-separated list of
directory names. Classes are realized by directories with subdirectories, or files containing class definitions.
The default file extension for Modelica is. np; for example, the package A would be stored in file A. np. If

Modelica 1.3 18

Modelica Language Specification

there is both a subdirectory Aand afile A. np, the lookup fails. Other forms of realizing packages are also
possible, for example using a hierarchical database.]

[Thefirst part of the path A. B. C (i.e., A) islocated by searching the ordered list of rootsin MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path islocated in
A; if that fails, the entire lookup fails without searching for Ain any of the remaining rootsin
MODELICAPATH.]

3.2 Declarations

3.21 Component clause

If the type specifier of the component denotes a built-in type (Real Type, IntegerType, etc.), the instantiated
component has the same type.

If the type specifier of the component does not denote a built-in type, the name of the type islooked up (3.1.1).
The found type isinstantiated with a new environment and the partialy instantiated parent of the component.
The new environment is the result of merging

» the modification of parent element-modification with the same name as the component
» the modification of the component declaration
in that order.

An environment that defines the value of a component of built-in typeis said to define a declaration eguation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element. [This makes it possible to override the declaration equation for a single element in
a parent modification, which would not be possible if the declaration equation is regarded as a single matrix
equation.]

Array dimensions shall be non-negative parameter expressions.
Variables declared with the flow type prefix shall be a subtype of Real.

Type prefixes (i.e., flow, discrete, nondiscrete, parameter, constant, input, output) shall only be applied for type,
record and connector components. Type prefixes of a structured component are also applied to the elements of
the component. Type prefixes shall only be applied for a structured component, if no element of the component
has a corresponding type prefix of the same category. [For example, input can only be used, if none of the
elements has an input or output type prefix] .

Components of function type may be instantiated. [A modifier can be used to e.g. change parameters of the
function. It is also possible to do such a modification with a class specialization.] Components of afunction do
not have start-attributes, but a binding assignment (":=" expression) is an expression such that the component is
initialized to this expression at the start of every function invocation (before executing the algorithm section or
calling the external function). Binding assignments can only be used for components of afunction. If no binding
assignment is given for a non-input component its value at the start of the function invocation is undefined. It is
aquality of implementation issue to diagnose this for non-external functions. The size of each non-input array
component of afunction must be given by the inputs. Components of afunction will inside the function behave
as though they had discrete variability.

3.2.2 Variability prefix

The prefixes nondiscr ete, discrete, parameter, constant of a component declaration are called variability
prefixes and define in which situation the variable values of a component are initialized (see section 3.6) and
when they are changed in transient analysis (= solution of initial value problem of the hybrid DAE):

* Parameter and constant variables vc remain constant during transient analysis (vc=const.).

» Discrete variables vd are discrete-time variables, i.e., they have a vanishing time derivative (der (vd)=0) and
can change their values only at event instants during transient analysis (see section 3.7).

Modelica 1.3 19

Modelica Language Specification
» Nondiscrete variables vn are continuous-time variables, i.e., they may have a non-vanishing time derivative
(der (vn)z0 possible) and may change their values at any time during transient analysis (see section 3.7).

If no variability prefix is present in a declaration, the following default variability is used for the variables of the
component according to their base types:

base type default variability comment
Redl nondiscrete continuous-time variable
Boolean, Integer, String discrete discrete-time variable

[A discrete variable is a piecewise constant signal which changesits values only at event instants during
simulation. This prefix is needed in order that special algorithms, such as the algorithm of Pantelides for index
reduction, can be applied (it must be known that the time derivative of these variablesisidentical to zero).
Furthermore, memory requirements can be reduced in the simulation environment, if it is known that a
component can only change at event instants.

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equationsin a library are only valid if some of the used components are constant
during simulation. The same also holds for the discrete and constant prefix. Additionally, the parameter prefix
allows a convenient graphical user interface in an experiment environment, to support quick changes of the most
important constants of a compiled model. In combination with an if-clause, a parameter prefix allows to remove
parts of a model before the symbolic processing of a model takes place in order to avoid variable causalitiesin
the model (similar to #ifdef in C). Class parameters can be sometimes used as an alternative. Example:

nodel Inertia

par anet er Bool ean state = true;

equati on

J*a = t1l - t2;

if state then /1 code which is renobved during synbolic
der(v) = a; /'l processing, if state=false
der(r) = v;

end if

end | nerti a;

A constant variableis similar to a parameter with the difference that constants cannot be changed after they
have been declared. It can be used to represent mathematical constants, e.g.

constant Real Pl=4*arctan(1);

A nondiscrete Boolean is a continuous-time variable, i.e., its value can change during continuous integration.
Thistypeis needed in some rare cases:

Bool ean of f1, offla;
nondi scr et e Bool ean of f2;

equati on
offl = sl < O;
of f la = noEvent (sl < 0); /'l error, since offla is discrete
off2 = noEvent(s2 < 0); /'l possible, because nondiscrete variable
ul = if offl then s1 else O; /] state events
u2 = if off2 then s2 else 0; /1l no state events

Snce offl isa discrete variable, state events are generated such that off1 is only changed at event instants.
Variable off2 may change its value during continuous integration. As a result, ul is guaranteed to be continuous
during continuous integration whereas no such guarantee exists for u2.

]

For elements of structured entities with variability prefixes the most restrictive of the variability prefix and the
variability of the component wins (using the default variability for the component if there is no variability prefix

Modelica 1.3 20

Modelica Language Specification

on the component).

[Example:
record A
constant Real pi=3. 14,
Real v;
I nteger i;
end A
paraneter A a;
/1 a.pi is a constant
/[l a.y and a.i are paraneters
nondi screte A b;
/1l b.pi is a constant
/1l b.y is a continuous-tine variable
/1 b.i is a dicrete-time variable

]
3.2.3 Protected variables

All elements defined under the heading protected are regarded as protected. All other
elements|i.e., defined under the heading public, without headings or in a separate
file] are public [i.e. not protected] .

If an extends clause is used under the protected heading, all elements of the base class
become protected elements of the current class. |f an extends clauseisapublic
element, all elements of the base class are inherited with their own protection. The
eventual headings protected and public from the base class do not affect the
consequent elements of the current class (i.e. headings protected and public are not
inherited).

The protected element cannot be accessed via dot notation. They may not be modified
or redeclared in class modification.

3.24 Expressions

Constant expressions are:
* Redl, Integer, Boolean and String literals.
* Readl, Integer, Boolean and String variables declared as constant .

» Except for the specia built-in operatorsinitial, terminal, der, edge, sample, pre and analysisType a
function or operator with constant subexpressions as argument (and no parameters defined in the
function) is a constant expression.

Parameter expressions are:
» Constant expressions.
* Real, Integer, Boolean and String variables declared as parameter.

» Except for the specia built-in operatorsinitial, terminal, der, edge, sample and pre afunction or
operator with parameter subexpressionsis a parameter expression.

* Thefunction analysisType() is parameter expression.
Discrete expressions are:
e Parameter expressions.

* Redl, Integer, Boolean and String variables declared as discr ete.

Modelica 1.3 21

Modelica Language Specification

» Function calls where all input arguments of the function are discr ete expressions.
e Expressions where all the subexpressions are discr ete expressions.

e Expressionsin the body of awhen clause.

e Theresult of comparing a nondiscrete Real with a numeric value.

e Thefunctions pre, edge, and change result in discrete expressions.

¢ Expressionsin functions behave as though they were discr ete expressions.

If the value of a constant or parameter expression is either directly or indirectly used as structural expression (i.e.
to compute the size of a component or for if-statements with unequal sizes of the branches) it is a quality-of-
implementation issue whether any calls of non-builtin functions are allowed as subexpressions. [The intention is
to erase thisrestriction for Modelica 2.0.]

Components declared as constant shall have an associated declaration egquation with a constant expression. The
value of a constant cannot be changed after its declaration.

The declaration equation of a parameter component and of the base type attributes [such as start] needsto be a
parameter expression.

The declaration equation of a discrete component needs to be a discrete expression.[Example:
nodel Constants

paraneter Real pl = 1;
constant Real cl = pl + 2; /] error, no constant expression
paraneter Real p2 = pl + 2;
end Constants;
nodel Test
Constants c1(pl=3); /1 fine
Constants c2(p2=7); /1 fine, declaration equation can be nodified
end Test;

]
3.25 Vectors, Matrices, and Arrays

3.25.1 Array declarations

The Modelicatype system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays
of more than two dimensions. [Thereis no distinguishing between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is a placehol der
for any class, including the builtin type classes Real, Integer, Boolean and String:

Modelicaform1 |Modelicaform 2 # dimensions [Designation |[Explanation

C Xx; Cx; 0 Scalar Scalar

C[n] x; C x[n]; 1 'V ector n - Vector

C[n, m] x; C x[n, m[; 2 Matrix nx m Matrix

Cln,m,p,..]x; [Cxmn,p,.]; k Array Array with k dimensions (k>=0).

[The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 isthe
traditional way of array declarationsin languages such as Fortran, C, C++ and is more general in some rare
situations, e.g., when a sguare matrix with unknown sizes is declared which cannot be defined with the first
form:

Real A[:,size(A 1)]; /I squarematrix of unknown size (size(A,1) isthe size of the first dimension)

Modelica 1.3 22

Modelica Language Specification

Real [:,size(A 1)] A, /lerror, because A is used before defined
Real [:] wvl1, v2 /I vectors vl and v2 have unknown sizes. The actual sizes may be different.
It is possible to mix the two declaration forms, but it is not recommended

Real [3,2] x[4,5]; /I x hastype Red[4,5,3,2];
]

Zero-valued dimensions are allowed, so C x[0] ; declares an empty vector and C x[0, 3] ; an empty matrix.

[Special cases:

Modelicaform1 |Modelicaform2 #dimensions |Designation |Explanation

C[1] x; C x[1]; 1 V ector 1 — Vector, representing a scalar
C[1,1] x; Cx[1, 1]; 2 Matrix 1 x 1 — Matrix, representing a scala
C[n,1] x; C x[n, 1]; 2 Matrix n x 1 — Matrix, representing a column
C[1,n] x; C x[1, n]; 2 Matrix 1 x n — Matrix, representing a row

]

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expanded component type. A
type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String) or it is not a
type class. Before operator overloading is applied, a type class of a variable is maximally expanded.

[Example:

type Voltage = Real (unit = "V");

type Current = Real (unit =" A");

connector Pin
Vol t age v; /I type class of v = Voltage, type of v = Real
flow Current i; I type class of i= Current, type of i = Real

end Pin;

type MultiPin = Pin[5];

Multi Pin[4] p; /I type class of p is MultiPin, type of p is Pin[4,5];

type Point = Real[3];
Poi nt pi1[10];
Real p2[10, 3];
The components pl and p2 have identical types.
p2[5] = pl[2]+ p2[4]; /l equivalent to p2[5,:] = p1[2,:] + p2[4,]
Real r[3] = pl[2]; /I equivalentto r[3] = pl[2,]
]

[Automatic assertions at simulation time:

Let A be adeclared array and i be the declared maximum dimension size of the di-dimension, then an assert
statement “assert(i >=0,..)" is generated provided this assertion cannot be checked at compile time. Itis a
quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index gfdmaeahsion. Then for every such index-
access an assert statement “assert(i >=1 and i <= sizgJA,d)" is generated, provided this assertion
cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]

Modelica 1.3 23

Modelica Language Specification

3.2.5.2 Built-in Functionsfor Array Expressions

The following function cannot be used in Modelica, but is utilized below to define other operators

promote(A,n)

Fills dimensions of size 1 from the right to array A upto dimension n, where"n
>= ndims(A)" isrequired. Let C = promote(A,n), with nA=ndims(A), then
ndims(C) = n, size(C,j) =size(Aj) for 1 <=j <=nA, size(C,j) = 1 for nA+1 <=
<=n,C[i_1,..i_nA 1L .., 1 =A[i_1, .. i_nA]

[Function promote could not be used in Modelica, because the number of dimensions of the return array cannot
be determined at compiletime if nisa variable. Below, promoteis only used for constant n] .

The following built-in functions for array expressions are provided:

Modelica Explanation

ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.

size(A,i) Returns the size of dimension i of array expression A wherei shall be >0 and <=
ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

scalar (A) Returns the single element of array A. size(A,i) = Llisrequired for 1 <=i <= ndims(A).

vector (A) Returns a 1-vector, if A isascalar and otherwise returns avector containing all the
elements of the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A isascalar or vector and otherwise returns the elements of the
first two dimensions as a matrix. size(A,i) = lisrequired for 2 <i <= ndims(A).

transpose(A) Permutes the first two dimensions of array A. It isan error, if array A does not have at
least 2 dimensions.

outer Product(v1,v2) | Returns the outer product of vectors v1 and v2 (= matrix(v)*transpose(matrix(v))).

identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other

elements zero.

zer os(Ny, Ny, N3, ...)

Returnsthe ny x n, X Nz X ... Integer array with all elements equal to zero (n; >= 0).

ones(ny,Ny,Na,...)

Return the ny x n, X Nz X ... Integer array with all elements equal to one (n; >=0).

fill(s,n,ny,Ng, ...)

Returnsthe ny X n, X Nz X ... array with all elements equal to scalar expression s which
has to be a subtype of Real, Integer, Boolean or String (n; >= 0). The returned array has
the sametypeass.

linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that v=linspace(x1,x2,n),
V[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <=i <=n. It isrequired that n >= 2.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.

product(A) Returns the product of all the elements of array expression A.

symmetric(A) Returns a matrix where the diagonal elements and the elements above the diagonal are
identical to the corresponding elements of matrix A and where the elements below the
diagonal are set equal to the elements above the diagona of A, i.e., B := symmetric(A) -
>Blij] := Alij], ifi <=j, B[i,j] := A[},i], if i >].

cross(x,y) Returns the cross product of the 3-vectorsx and y, i.e.

cross(x,y) = vector([x[2]*y[3]-x[3]*y[2]; x[3]*Y[1]-x[1]*Y[3]; x[1]*V[2]-x[2]*y[1]]);

Modelica 1.3

24

Modelica Language Specification

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,

cross(x,y) = skew(x)*y; skew(x) =[0, -x[3], X[2]; X[3], O, -x[1]; -X[2], X[1], O];

[Example:

Real x[4,1,6];

size(x,1) = 4;

si ze(x); Il vector with elements 4, 1, 6
size(2*x+x) = size(x);

Real [3] vl = fill(1.0, 3);
Real [3,1] m= matrix(vl);
Real [3] v2 = vector(m;

Bool ean check[3,4] = fill(true, 3, 4);
]

3.25.3 Vector, Matrix and Array Constructors

Array Construction

The constructor function array(A,B,C,...) constructs an array from its arguments according to the following
rules:

* Size matching: All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = ...

» All arguments must be type equivalent. The datatype of the result array is the maximally expanded type of
the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real humbers.

e Each application of this constructor function adds a one-sized dimension to the left in the result compared to
the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndimes(A) + 1 =ndims(B) + 1, ...

« {A, B,C,..} isashorthand notation for array(A, B, C, ...).
¢ There must be at least one argument [i.e., array() or {} isnot defined] .
[Examples:

{1,2,3} isa 3 vector of type Integer.
{{11,12,13}, {21,22,23} } isa 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} isa 1x1x3 array of type Real.

Real[3] v = array(1, 2, 3.0);
type Angle = Real(unit="rad");
parameter Angle alpha = 2.0; // type of alpha is Real.
array(alpha, 2, 3.0) is a 3 vector of type Real.
Angle[3] a = {1.0, alpha, 4}; // type of a is Real[3].
]

Array Concatenation

The function cat(k,A,B,C,...) concatenates arrays A,B,C,... dong dimension k according to the following rules:
» ArraysA, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

* ArraysA, B, C, ... must be type equivalen The datatype of the result array is the maximally expanded type
of the arguments. The maximally expanded types should be equivalent. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

ek hasto characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C); k shall be an
integer number.

Modelica 1.3 25

Modelica Language Specification

» Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of dimension
k,i.e, size(A,j) = size(B,j), for 1 <=j <= ndims(A) and j <> k.

[Examples:

Real [2,3] r1 =cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real[2,6] r2 = cat(2, rl1, 2*rl);

]

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) =, then
size(R,k) = size(A k) + size(B,k) + size(Ck) + ...
size(R,j) = size(A)j) = size(B,j) =size(Cj) = ..., for L<=j<=nandj <> k.
R[i_1, .., ik, ..,i_n]=A[i_1,..i_k, .., i_n], fori_k<=size(AK),
Rli_1, .., i K, ..in=B[i_l,..i_k-size(A)), .., i_n], fori_k <=size(A k) + size(B k),

wherel <=i_j <=size(Rjj) for1<=j <=n.
Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions.

» Concatenation along first dimension:
[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C),). If necessary, 1-sized dimensions are added to theright of A,
B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

e Concatenation along second dimension:
[A, B, C, ..] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C),). If necessary, 1-sized dimensions are added to theright of A,
B, C before the operation is carried out, especially that each operand has at |east two dimensions.

[c.d]].

* [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a matrix with the
elementsof A, if A isascalar or avector.

» There must be at least one argument (i.e. [] is not defined)
[Examples:
Real s1, 2, vi[n1], v2[n2], M1[m1,n], M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,K];

[vi;v2] isa(nl+n2) x 1 matrix
[M1;M2] isa(ml+m2) x n matrix
[M3,M4] isanx (ml+m2) matrix
[K1;K2] isa(ml+m2) xnxkarray
[s1;82] isa2x1matrix

[s1,51] isalx2matrix

[sl] isalx1matrix

[vl] isanlx 1 matrix

Real[3] v1 = array(1, 2, 3);

Real[3] v2 = {4, 5, 6};

Real[3,2] ml=[vl, v2];

Real[3,2] m2=[v1,[4;5;6]]; // ml=m2
Real[2,3] m3 3, 4,5, 6];

=[1,2,
Real[1,3] m4=[1,2,3];

Modelica 1.3 26

Modelica Language Specification

Real[3,1] m5=[1; 2; 3];
]

Vector Construction

Vectors can be constructed with the general array constructor, e.g., Real [3] v = {1, 2, 3}.

The colon operator of simple-expression can be used instead of or in combination with this general constructor to
construct Real and Integer vectors. Semantics of the colon operator:

e j:k isthelnteger vector {j, j+1, ..., k}, if j and k are of type Integer.

¢ j:k istheRea vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.

e j:k is aRed or Integer vector with zero elements, if j > k.

e j:d:k isthe Integer vector {j, j+d, ..., j+n*d}, with n = (k —j)/d, if j, d, and k are of type Integer.
e« j:d:k isthe Real vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type Real.

e j:d:k is aRealorInteger vector with zero elements, ifd >0and j>korifd <0 andj<Kk.
[Examples:

Real v1[5] = 2.7 : 6.8;

Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7} /1 = same as vl

]

3.2.5.4 Array access operator

Elements of vector, matrix or array variables are accesse(l with colon is used to denote all indices of one

dimension. A vector expression can be used to pick out selected rows, columns and elements of vectors,

matrices, and array$he number of dimensions of the expression is reduced by the number of scalar index
arguments.

[Examples:

e @[, j]is a vector of the j-th column of a,
e afj: Klis{[alj], a[j+1], ... , alK]},

e al,j:Klis[al,j, a[:j+1], ..., a[:,KI],

e Vv[2:2:8] =v[{2,4,6,8}] .

e if x isavectorx[1] is a scalar, but the slieg 1: 5] is a vector (a vector-valued or colon index
expression causes a vector to be returned).]

[Examples given the declaration x[n, m], V[K], Zi, j, p]:

Expression # dimensions Type of value
X[1, 1] 0 Scalar

X[:, 1] 1 n — Vector

X[1, 1] 1 m — Vector

v[1:p] 1 p — Vector

X[1:p,] 2 p x m— Matrix
X[1:1,] 2 1 x m-"row" matrix
x[{1, 3, 5}, 1] 2 3 X m — Matrix

Modelica 1.3 27

Modelica Language Specification

X[:, V] 2 n x k — Matrix

z[:, 3,] 2 i X p — Matrix
x[scalar([1]), 3] 1 m — Vector
x[vector([1]), :] 2 1 x m - "row" matrix

]

3.25.5 Scalar, vector, matrix, and array operator functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype of Integer
can also be used; the Integer expression is automatically converted to Real.

Numeric Type Class
The termnumeric class is used below for a subtype of the Real or Integer type class.
Equality and Assignment of type classes

Equality “a=b” and assignment “a:=b” of scalars, vectors, matrices, and arrays is defined element-wise and
require both objects to have the same number of dimensions and corresponding dimension sizes. The operands
need to be type equivalent.

Type of a Type of b Resultofa="b Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a=b

\Vector[n] Vector[n] Vector[n] alj] = b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] alfj, k] = b[j, K]

Array[n, m, ...] Array[n, m, ...] Array[n, m, ...] afj, k, ...] =b[j, k, ...]

Addition and Subtraction of numeric type classes

Addition “a+b” and subtraction “a-b” of numeric scalars, vectors, matrices, and arrays is defined element-wise
and require size(a) = size(b) and a numeric type class for a and b.

Type of a Type of b Result of a +/- b Operation ¢ := a +/- b (j=1:n, k=1:m)
Scalar Scalar Scalar c:=a+/-b

\Vector[n] Vector[n] Vector[n] c[j] := a[j] +/- b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, K] := a]j, k] +/- b[j, K]

Array[n, m, ...] Array[n, m, ...] | Array[n, m, ...] cli,k, ...]:=aj, k, ...] +-b[j, k, ...]

Scalar Multiplication of numeric type classes

Scalar multiplication “s*a” or “a*s” with numeric scalar s and numeric scalar, vector, matrix or array a is defined
element-wise:

Type of s Type of a Type of s*a and afs Operation c :=s*a or c¢:=a*s (j=1:n, k=1m)
Scalar Scalar Scalar c:=s*a

Scalar Vector [n] Vector [n] c[j] :=s* a[j]

Scalar Matrix [n, m] | Matrix [n, m] c[j, k] := s* alj, k]

Scalar Array[n, m, ...]| Array [n, m, ...] cfj, k, ...] :=s*a[j, k, ...]

Modelica 1.3 28

Matrix Multiplication of numeric type classes

Modelica Language Specification

Multiplication “a*b” of numeric vectors and matrices is defined only for the following combinations:

Type ofa |Type of b | Type of a*|b Operation c := a*b
Vector [n] |Vector [n] |Scalar ¢ := suifalk]*b[K]), k=1:n
Vector [n] |Matrix [n, m] Vector [m] | c[j] := sualk]*b[k, j]), j=1:m, k=1:n
Matrix [n, m]|Vector [m] |Vector [n] | c[j] := sund@[j, k]*b[k])
Matrix [n, m]|Matrix [m, p]Matrix [n, p] c[i, j] = sumal[i, KI*b[K, j]), i=1:n, k=1:m,
k=1:p
[Example:
Real A[3,3], x[3], b[3];
A*X = b;
X*A = b; /I same as transpose([x])*A*b

[v] *transpose([V])

V¥ MV

tranpose([v])*Mv

]

Scalar Division of numeric type classes

/I outer product
/I scalar

/I vector with one element

Division “a/s” of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-wise.

Type of a Type of s Resultofa/s Operation c:=a/s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=als

Vector[n] Scalar Vector[n] clk] :=a[k] /s

Matrix[n, m] Scalar Matrix[n, m] cli, kl:=alj, K] /s

Array[n, m, ...] Scalar Array[n, m, ...] cl, k, ...]:=alj, k, ...]/s

Exponentiation of Scalars of numeric type classes

Exponentiation “a”b” is defined gw() in the C language if both “a” and “b” are scalars of a numeric type

class.

Scalar Exponentiation of Square M atrices of numeric type classes

Exponentiation “a"s” is defined if “a” is a square numeric matrix and “s” is a scalar as a subtype of Integer with
s >= 0. The exponentiation is done by repeated multiplication
(e.g. a3 = a*a*a; a0 = identity(size(a,1)); a*1 = a).

[Non-Integer exponents are forbidden, because this would require to compute the eigenvalues and eigenvectors
of “a” and this is no longer an elementary operation].

Slice operation

If aisan array of records and misacomponent of that record, the expression a.misinterpreted as slice
operation It returns the array of components {a[1].m, ...}.

If m is also an array component, the slice operation is valid only iefljet)=size@[2].m)=...

Modelica 1.3

29

Modelica Language Specification

Relational operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar arguments. The result is Boolean and is
trueor falseif therelationisfulfilled or not, respectively.

In relations of the form vl ==v2 or v1 <> v2, v1 or v2 shall not be a subtype of Real. [The reason for thisruleis
that relations with Real arguments are transformed to state events (see section Events below) and this
transformation becomes unnecessarily complicated for the == and <> relational operators (e.g. two crossing
functions instead of one crossing function needed, epsilon strategy needed even at event instants). Furthermore,
testing on equality of Real variables is questionable on machines where the number length in registersis
different to number length in main memory].

Relations of the form “v1 rel_op v2”, with v1 and v2 variables and rel_op a relational operator are called
elementary relations. If either v1 or v2 or both variables are a subtype of Real, the relation is called a Real
elementary relation.

Functions

Functions with one scalar return value can be applied to arrays element-wise, e.qg. if A is a vector of reals, then
sin(A) is a vector where each element is the result of applying the function sin to the corresponding element in
A.

Consider the expressidr{ ar g1, . . ., ar gn), an application of the function f to the arguments arg1, ..., argn
is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If the types match, nothing is done.

2. If the types do not match, and a type conversion can be applied, it is applied. Continued with step 1.

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked to see if

it is an n-dimensional array of the formal parameter type. If it is not, the function call is invalid. If it is, we
call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call is invalid. If no foreach argument exists, the function is applied in the normal fashion, and the
result has the type specified by the function definition.

5. The result of the function call expression is an n-dimensional array with the same dimension sizes as the
foreach arguments. Each element ei,..,j is the result of applying f to arguments constructed from the original
arguments in the following way.

» If the argument is not a foreach argument, it is used as-is.
» If the argument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, all of them have to be the same size, and they are traversed in parallel.

[Examples:
sin({a, b, c}) = {sin(a), sin(b), sin(c)} /[argument is a vector
sin([a,b,c]) [sin(a),sin(b),sin(c)] /[l argument may be a matrix

atan({a, b, c},{d, e, f})

This works even if the function is declared to take an array as one of its arguments. If pval is defined asa
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a two-dimensional array (a vector of vectors). The result typein this case will be a vector of
Real.

pval ([1, 2; 3,4])
sin([1,2;3,4])

{atan(a,d), atan(b,e), atan(c,f)}

[pval ([1,2]); pval ([3,4])]
[sin({1,2}); sin({3,4})]

Modelica 1.3 30

Modelica Language Specification

= [sin(l), sin(2); sin(3), sin(4)]

function Add
i nput Real el, e2;
out put Real sumi;

al gorithm
sunl := el + e2;
end Add;

Add(1, [1, 2, 3]) adds oneto each of the elements of the second argument giving the result [2, 3, 4] . However, it
isillegal towrite 1 + [1, 2, 3], because the rules for the built-in operators are more restrictive.]

Empty Arrays

Arrays may have dimension sizes of 0. E.g.
Real x[0]; [/l an empty vector
Real A[O, 3], B[5, 0], C[0, 0]; // empty matrices

* Empty matrices can be constructed with the fill function. E.g.
Resl Al:;;;] =fill(0.0,0, 1) /l aReal 0 x 1 matrix
Boolean BJ:, :, :] =fill(false, 0, 1, 0) // aBoolean 0 x 1 x 0 matrix

» Itis not possible to access an element of an empty matrix, e.g. v[j,K] is wrong if “v=[]" because the assertion
fails that the index must be bigger than one.

» Size-requirements of operations, such as +, -, have also to be fulfilled if a dimension is zero. E.qg.
Real[3,0] A, B;
Real[0,0] C;
A+ B //fine, result is an empty matrix
A+ C [/l error, sizes do not agree

» Multiplication of two empty matrices results in a zero matrix if the result matrix has no zero dimension
sizes, i.e.,
Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = zeros(m,n) (non-empty matrix, with zero elements).

[Example:
Real u[p], x[n], y[al, Aln,n], B[n,p], q,n], Da,np];
der(x) = A*x + B*u
y = C'x + D*u

Assume n=0, p>0, g>0: Resultsin "y = D*u"
]

3.2.6 Final eement modification

An element defined as final in an element modification cannot be modified by a modification or by a
redeclaration. All elements of afinal element are also final. [Setting the value of a parameter in an experiment
environment is conceptually treated as a modification. Thisimpliesthat a final modification equation of a
parameter cannot be changed in a simulation environment] .

[Examples:
type Angle = Real (final quantity="Angle”, final unit="rad”,
displayUnit="deg");
Angle al(unit="deg"); /I error, since unit declared as final!

Angle a2(displayUnit="rad"); //fine

Modelica 1.3 31

Modelica Language Specification

nodel TransferFunction
par aret er Real b[:] = {1} "numerator coefficient vector”;
par armet er Real a[:] = {1,1} "denominator coefficient vector”;

end TransferFunction;
nodel Pl "PI controller”;

par armet er Real k=1 "gain”;
par armet er Real T=1 "time constant”;

TransferFunction tf(final b={T,1}, final a={T,0});
end PI;
nodel Test

Pl c1(k=2, T=3); /I fine

Pl c2(b={1}); /Il error, b is declared as final
end Test;

]

Note: In the previous versions of Modelica (Modelica 1.0 and 1.1), the final keyword had three different
meanings depending on the situation where it was used. To simplify the semantics, in Modelica 1.2, final is only
used in modifications to prevent further modifications and redeclarations. As a consequence, components have to
be explicitly defined asreplaceable, if they shall be redeclared (previously, this was the default and final was
used to prevent redeclarations).

3.2.7 Short classdefinition

A class definition of the form
cl ass IDENT ; = IDENT , class_modification ;
isidentical to the longer form

cl ass IDENT 4
ext ends IDENT , class_maodification ;
end IDENTq;

A short class definition of the form
t ype TN = T[N] (optional modifier) ;
where N represents arbitrary array dimensions, conceptually yields an array class

array TN
T[n] _ (optional modifiers);
end TN;

Such an array class has exactly one anonymous component (_). When a component of such an array classtypeis
instantiated, the resulting instantiated component type is an array type with the same dimensionsas _ and with
the optional modifier applied.

[Example:

t ype Force = Real[3](unit={ "Nm*, "Nni, "Nm'});
Force f1;

Real f2[3](unit={ "N, "N, "Nm'});

thetypesof f 1 and f 2 areidentical.]

3.2.8 Local classdefinition

Thelocal class should be statically instantiable with the partially instantiated parent of the local class apart from
local class components that are partial or outer. The environment is the modification of any parent class element
modification with the same name as the local class, or an empty environment.

Modelica 1.3 32

Modelica Language Specification

The uninstantiated local class together with its environment becomes an element of the instantiated parent class.

[The following example demonstrates parameterization of a local class:
class C1
class Voltage = Real (unit="V");
Vol tage v1, v2;
end Ci;
class C2
extends C1(Vol tage(unit="kV"));
end C2;
Instantiation of class C2 yieldsa local class Voltage with unit-modifier "kV". The variables vl and v2
instantiate thislocal class and thus have unit "kV".]

3.29 Extendsclause

The name of the base classislooked up in the partially instantiated parent of the extends clause. The found base
classisinstantiated with a new environment and the partially instantiated parent of the extends clause. The new
environment is the result of merging

e arguments of al parent environments that match names in the instantiated base class
» the modification of a parent element-modification with the same name as the base class
» theoptiona class modification of the extends clause

in that order.

[Examples of the three rules are given in the following example:
class A
paraneter Real a, b;
end A;
class B
extends A(b=3); /'l Rule #3
end B;
class C
extends B(a=1, A(b=2)); /1l Rules #1 and #2
end C

]

The elements of the instantiated base class become elements of the instantiated parent class.

[From the example above we get the following instantiated class:

cl ass Cinstance
par anet er Real a=1;
par anet er Real b=2;
end Ci nstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bconp(b=1, A(b=2));
end C2;

yields an instance with bconp. b=1, which overrides b=2]
The declaration elements of the instantiated base class shall either
* Not aready exist in the partialy instantiated parent class[i.e., have different names] .

» Beidentica to any element of the instantiated parent class with the same name and the same level of
protection (public or protected). In this case, the element of the instantiated base classisignored.

Otherwise the mode! isincorrect.

Modelica 1.3 33

Modelica Language Specification

[The second rule saysthat if an element isinherited multiple times, the first inherited element overrides later
inherited elements:

class A
paraneter Real a, b;
end A

class B
extends A(a=1);
ext ends A(b=2);
end B;

Class B is well-formed and yields an instantiated object with elements a and b inherited from the first extends
clause:

cl ass Bi nstance
par aneter Real a=1;
par anet er Real b;
end Bi nst ance;

]

Equations of the instantiated base class that are syntactically equivalent to equations in the instantiated parent
class are discarded. [Note: equations that are mathematically equivalent but not syntactically equivalent are not
discarded, hence yield an overdetermined system of equations.]

3.2.10 Redeclaration

A redeclar e construct replaces the declaration of an extends clause, local class or component in the modified
element with another declaration. The type specified in the redeclaration shall be a subtype of the typein the
origina declaration.

The element modifications of the redeclaration and the original declaration are merged in the usual way.

[Example:
class A
par anet er Real x;
end A;
class B
par anet er Real x=3.14, vy; /1 Bis a subtype of A
end B;
class C
repl aceabl e A a(x=1);
end C
class D
extends C(redeclare B a(y=2));
end D

which effectively yields a class D2 with the contents

class D2
B a(x=1, y=2);
end D2;

]
The following additional constraints apply to redeclarations:

» only classes and components declared as replaceabl e can be redeclared with a new type and to allow
further redeclarations one must usedeclar e replaceable’

» areplaceable class used in an extends clause shall only contain public confobmantse, it
cannot be guaranteed that a redeclaration keeps the protected variables of the replaceable default
clasg

Modelica 1.3 34

Modelica Language Specification

* anelement declared as constant cannot be redeclared

¢ anelement declared as parameter can only be redeclared with parameter or constant

« anelement declared as discrete can only be redeclared with discr ete, parameter or constant
e afunction can only be redeclared as function

¢ anelement declared as flow can only be redeclared with flow

¢ anelement declared as not flow can only be redeclared without flow

Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared as
protected.

Array dimensions may be redeclared.

3.3 Equations

3.3.1 Equation clause

The instantiated equation isidentical to the non-instantiated equation.
Names in an equation shall be found by looking up in the partially instantiated parent of the equation.

Equation equality = shall not be used in an agorithm clause. The assignment operator : = shall not be used in an
equation clause.

3.3.2 If clause

If clausesin equation sections which do not have exclusively parameter expressions as switching conditions
shall have an else clause and each branch shall have the same number of equations. [If this condition is violated,
the single assignment rule would not hold, because the number of equations may change during simulation
although the number of unknowns remains the same] .

3.3.3 For clause

The expression of afor clause shall be avector expression. It is evaluated once for each for clause, and is
evaluated in the scope immediately enclosing the for clause. In an equation section, the expression of afor clause
shall be a parameter expression. The loop-variable isin scope inside the loop-construct and shall not be assigned
to.

[Example;
for i in 1:10 I oop /l'i takesthevalues 1,2,3,...,10
for r in1.0: 1.5 : 5.5 |loop //rtakesthevauesl.0,25,4.0,55
for i in {1,3,6,7} loop /l'i takesthevalues, 3,6, 7

The loop-variable may hide other variables asin the following example. Using another name for the loop-
variableis, however, strongly recommended.

constant | nteger j=4;

Real x[j];
equati on
for j in 1:j loop // The loop-variable j takes the values 1,2,3,4
x[jl1=j; /! Uses the | oop-variable j
end for;

Modelica 1.3 35

Modelica Language Specification

3.3.4 When clause

The expression of awhen clause shall be a discrete Boolean scalar or vector expression. The equations within a
when clause are activated when the scalar or any one of the elements of the vector expression becomestrue. A
when clause shall not be used within a function class.

[Example:
Equations are activated when x becomes > 2:

when > 2 then
yl 2*X + y2,
y2 sin(x);
end when;

Equations are activated when either x becomes > 2 or sample(0,2) becomes true or x becomes less than 5:

when {x > 2, sanple(0,2), x < 5} then
yl = 2*x + y2;
y2 = sin(x);

end when;

The eguations in a when clause are sorted independently from each other with all other equations.]

I X

A when clause
when {conditionl, condition2, ..., conditionN} then
end when;

is equivalent to the following special if-clause, where Boolean b[N]; is necessary because we can only apply
edge to variables

b: ={conditionl, condition2, ..., conditionN;
if edge(b[1]) or edge(b[2]) or ... edge(b[N]) then
ena- | f;

with“edge(A) = A and not pre(A)” and the additional guarantee, that the equations within this special
if clause are only evaluated at event instants.

When clauses cannot be nested.
[Example:
The following when clauseisinvalid:

when x > 2 then
when y1 > 3 then
y2 = sin(x);
end when;
end when;

]
3.35 Assert

The expression of an assert clause shall evaluate t¢ Thesntent is to perform a test of model validity and to
report the failed assertion to the user if the expression evaluates to false. The means of reporting a failed
assertion are dependent on the simulation environment. The intention is that the current evaluation of the model
should stop if when an assert with a false condition is encountered, but the tool should continue the current
analysis (e.g. by using a shorter stepsize).]

Modelica 1.3 36

Modelica Language Specification

3.3.6 Terminate

The terminate function successfully terminates the analysis which was carried out. The function has a string
argument indicating the reason for the success. [The intention is to give more complex stopping criteria than a
fixed point in time. Example:

nodel Thr owi ngBal |
Real x(start=0);
Real y(start=1);
equati on
der(x)=...
der(y)=...
when y<0 then
terminate("The ball touches the ground");
end when;
end ThrowingBall ;

]
3.3.7 Connections

Connections between objects are introduced by the connect statement in the equation part of aclass. The
connect construct takes two references to connectors, each of which is either an element of the same class asthe
connect statement or an element of one of its components. The two main tasks are to:

» Build connection sets from connect statements.
* Generate equations for the complete model.
Definitions:
Connection sets

A connection set is a set of variables connected by means of connect clauses. A connection set shall
contain either only flow variables or only non-flow variables.

Inside and outside connectors

In an element instance M, each connector element of M is called an outside connector with respect to
M. All other connector elements that are hierarchically inside M, but not in one of the outer connectors
of M, iscalled an inside connector with respect to M.

[Example: in connect(a,b.c) ‘a’ is an outer connector and ‘b.c’ is an inner connector, unless ‘b’ is a connector.]

3.3.7.1 Generation of connection equations

Before generating connection equations outer elements are resolved to the corresponding inner elementsin the
instance hierarchy. The arguments to each connect-statement are resolved to two connector elements, and the
connection is moved up zero or more times in the instance hierarchy to the first element instance that both the
connectors are hierarchically contained init.

For every use of the connect statement
connect (a, b);

the primitive components of a and b form a connection set. If any of them already occur in a connection set
from previous connections with matching inside/outside, these sets are merged to form one connection set.

Modelica 1.3 37

Modelica Language Specification

Composite connector types are broken down into primitive components. Each connection set is used to generate
equations for across and through (zero-sum) variables of the form

al = a2 =... = an;
z1 + z2 + (-2z3) + ... + zn = 0;

In order to generate equations for through variables [using the f I owprefix], the sign used for the connector
variable z; aboveis +1 for inside connectors and -1 for outside connectors [z 3 in the example above] .

For each flow (zero-sum) variable in a connector that is not connected as an inside connector in any element
instance the following equation isimplicitly generated:

z=0;
The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

3.3.7.2 Restrictions

A component of a connector declared with the input type prefix shall not occur as inside connector in more than
one connect statement. A component of a connector declared with the output type prefix shall not occur as
outside connector in more than one connect statement. If two components declared with the input type prefix
are connected in a connect statement one must be an inside connector and the other an outside connector. If two
components declared with the output type prefix are connected in a connect statement one must be an inside
connector and the other an outside connector.

Subscripts in a connector reference shall be constant expressions.

If the array sizes do not match, the original variables are filled with one-sized dimensions from the left until the
number of dimensions match before the connection set equations are generated.

Constants or parametersin connected components yield the appropriate assert statements; connections are not
generated.

3.4 Functions

There are two forms of function application, see section 2.2.7. In the first form,
f(3.5, 5.76)

the arguments are associated with the [formal] parameters according to their position in the argument list. Thus
argument i is passed to parameter i, where the order of the parametersis given by the order of the component
declarations in the function definition. The first input component is parameter number 1, the second input
component is parameter number 2, and so on. When a function is called in this way, the number of arguments
and parameters must be the same.

In the second form of function application,
g(x=3.5, y=5.76)

the parameters are explicitly associated with the arguments by means of equations in the argument list.
Parameters that have default values need not be specified in the argument list.

The type of each argument must agree with the type of the corresponding parameter, except where the standard
type coercions can be used to make the types agree. (See also section 3.2.2.5 on applying scalar functions to

arrays.)
[Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real vy;

i nput Real z := 10.0;
out put Real r;

Modelica 1.3 38

Modelica Language Specification

end f;
Then the following two applications are equivalent:

f(1.0, 2.0, 10.0)
f(y = 2.0, x =1.0)

]

A function may have more than one output component, corresponding to multiple return values. When afunction
has a single return value, afunction application is an expression whose value and type are given by the value and
type of the output component.

The only way to call afunction having more than one output component is to make the function call the RHS of
an equation or assignment. In these cases, the LHS of the equation or assignment must be alist of component
references within parentheses. The component references are associated with the output components according
to their position in the list. Thus output component i is set equal to, or assigned to, component referencei in the
list, where the order of the output componentsis given by the order of the component declarationsin the function
definition.

The number of component references in the list must agree with the number of output components.

The type of each output parameter must agree with the type of the corresponding component referencesin the
list onthe LHS.

[Example. Suppose a function f is defined as follows:

function f
i nput Real x;
i nput Real v;

out put Real r1;
out put Real r2;
out put Real r3;
end. f
Then the following equation and assignment show the two possible ways of calling f:

(x, y, z) =f1(1.0, 2.0);
(x, y, z) :=1f(1.0, 2.0);

]

The only permissible use of an expression in the form of alist of expressionsin parentheses, iswhen it is used as
the LHS of an equation or assignment where the RHS is an application of afunction with more than one output
component. In this case, the expressionsin the list shall be component references.

[Example. The following areillegal:

(x+1, 3.0, z/y) =f(1.0, 2.0); /I Not alist of component references.
(x, vy, z) +(u, v, w /I Not LHS of suitable eqgn/assignment.

]
3.5 Evaluation

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not
influence the result (e.g. short-circuit evaluation of boolean expressions). |f-statements and if-expressions
guarantee that their clauses are only eval uated if the appropriate condition istrue, but relational operators
generating state or time events will during continuous integration have the value from the most recent event.

[Example. If one wants to guard an expression against evaluation it should be guarded by an if

Bool ean v[n];

Modelica 1.3 39

Modelica Language Specification

Bool ean b;
I nteger 1;
equati on
x=v[l] and (1>=1 and I<=n); // Invalid
x=if (I>=1 and I<=n) then v[I] else false; // Correct
To guard square against square root of negative number use noEvent:
der(h)=if h>0 then —c*sqrt(h) else 0; // Incorrect
der(h)=if noEvent(h>0) then -c*sqrt(h) else 0; // Correct
]

3.6 Eventsand Synchronization

The integration is halted and an event occurs whenever a Real elementary relation, e.g. “x > 2", changes its
value. The value of a relation can only be changed at event ingtaatiser words, Real elementary relations

induce state or time events]. The relation which triggered an event changes its value when evaluated literally
before the model is processed at the event ingtanther words, a root finding mechanism is needed which
determines a small time interval in which the relation changes its value; the event occurs at theright side of this
interval]. At an event instant, a relation is taken literally. During continuous integration a Real elementary
relation has theonstant value of the relation from the last event instant.

[Example:
y = if u > uMax then uMax else if u < uMn then uMn el se u;
During continuous integration always the same if branch is evaluated. The integration is halted whenever u-

uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration is
restarted.

Numerical integration methods of order n (n>=1) require continuous model egquations which are differentiable
upto order n. Thisreguirement can be fulfilled if Real elementary relations are not treated literally but as
defined above, because discontinuous changes can only occur at event instants and no longer during continuous
integration.]

[It isa quality of implementation issue that the following special relations

time >= discrete expression
time < discreteexpression

trigger a time event at “time = discrete expression”, i.e., the event instant is known in advance and no iteration
is needed to find the exact event instant.]

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation is present, are the argument of the noEvent(..) function. The noEvent feature is propagated to all
subrelations in the scope of the noEvent function.

[Example:
y = noEvent(if u > uMax then uMax else if u < uMn then uMn else u);
The if-expression is taken literally without inducing state events.
ThenoEvent function is useful, if e.g. the modeller can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event

iterations occur during integration. Furthermore, theEvent function is used to guard agains “outside
domain” errors, e.g. y = ihoEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when clauseand all assignment statements within function
classesare implicitly treated with the noEvent function, i.e., relations within the scope of these operators never
induce state or time events. [Using state events in when-clauses is unnecessary because the body of a when

Modelica 1.3 40

Modelica Language Specification

clause is not evaluated during continuous integration.]
[Example:
Limtl = noEvent (x1 > 1);

Limt2 = x2 > 10;

Limt = Limtl or Limt2;

when Limit then /1 error, Limt is no discrete expression
Cl ose = true;
end when;

Thisisan error, because Limitl may change during continuous integration, i.e., it isnot a discrete-time variable
and therefore the when condition Limit is also no discrete-time variable (when conditions need to be discrete
expressions in order to guarantee that when-equations are never evaluated during continuous integration).

Modelicais based on the synchronous data flow principle which is defined in the following way:

1. All variables keep their actual values until these values are explicitly changed. Variable values can be
accessed at any time instant during continuous integration and at event instants.

2. Atevery timeinstant, during continuous integration and at event instants, the active equations express
relations between variables which have to be fulfilled concurrently (equations are not active if the
corresponding if-branch, when-clause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not take time. [If computation or communication
time hasto be simulated, this property has to be explicitly modeled].

4. Thetotal number of equationsisidentical to the total number of unknown variables (= single assignment
rule).

[These rules guarantee that variables are always defined by a unique set of equations. It is not possible that a
variableis e.g. defined by two eguations, which would give rise to conflicts or non-deterministic behaviour.
Furthermore, the continuous and the discrete parts of a model are always automatically “synchronized”.
Example:

when conditionl then
cl ose = true;
end when;

when condition2 then
cl ose = fal se;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If this would be a valid model, a conflict occurs when both conditions become true at the same time
instant, since no priorities between the two equations are assigned. To become valid, the model has to be
changed to:

when {conditionl, condition2} then
close = if edge(conditionl) then true el se false;
end when;

Here, it is well-defined if both conditions become true at the same time instant (condition1 has a higher priority
than condition2).]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters.
Example:

Bool ean fast Sanpl e, sl owSanpl e;
I nteger ticks(start=0);
equati on
fast Sanpl e = sanple(0,1);
when fast Sanpl e then

Modelica 1.3 41

Modelica Language Specification

ticks = if pre(ticks) < 5 then pre(ticks)+1l else O;
sl owSanpl e = pre(ticks) == 0;
end when;

when fast Sanpl e

end. Wﬁen;

when sl owSanpl e t hen

end. Wﬁen;

The slowSample when-clause is evaluated at every 5™ occurrence of the fastSample when clause]

then // fast sanpling

/1 slow sanpling (5-tines slower)

[The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile time. For example, “deadlock” between different when-
clauses is present if there are algebraic loops between the equations of the when-clauses.]

3.7 Restricted classes

The keyword class can be replaced by one of the following keywords: record, type, connector, model, block,
package or function. Certain restrictions will then be imposed on the content of such a definition. The following
table summarizes the restrictions.

No equations are alowed in the definition or in any of its components. May not be used in

record connections.

type May only be extension to the predefined types, records or array of type.

connector No equations are allowed in the definition or in any of its components.

model May not be used in connections.

block Fixed c_:ausality, input-output block. Each component_ of an intqface must either have
Causality equal to Input or Output. May not be used in connections.

package May only contain declarations of classes and constants.
Same restrictions as for block. Additional restrictions: no equations, at most one algorithm

function section. Calling a function requires either an agorithm section or an external function

interface. A function can not contain calls to the Modelica built-in operators der, initial,
terminal, sample, pre, edge, change, reinit, delay and cardinality.

3.8 Variableattributes

The attributes of the predefined variable types are described below with Modelica syntax athough they are
predefined; redeclaration of any of these typesis an error. The definitions use Real Type, IntegerType,
BooleanType and StringType as mnemonics corresponding to machine representations. [Hence the only way to
declare a subtype of e.g. Real is to use the extends mechanism.]

type Real

Real Type val ue;

par anmet er
par amet er
par amet er
par amet er
par anmet er
par anmet er

par anet er
equation
assert (val

/1 Accessed wi thout dot-notation

StringType quantity =""

StringType wunit ="" "Unit used in equations"”;
StringType displayunit = "" "Default display unit";

Real Type mn=-Inf, max=+Inf; // Inf denotes a |arge val ue
Real Type start 0; /1 Initial value

Bool eanType fi xed

Real Type

nom nal ;

true,
fal se;

/1 default for paraneter/constant;
/1 default for other variables
/1 Nom nal val ue

ue >= min and value <= max, "Variable value out of limt");

Modelica 1.3

42

Modelica Language Specification

assert(nomnal >= mn and nom nal <= max, "Nom nal value out of limt");
end Real ;

type | nteger
I nt eger Type val ue; /1l Accessed w thout dot-notation
par anet er | nteger Type m n=-1nf, max=+Inf;
par anmet er | ntegerType start 0; /1 Initial value
par armet er Bool eanType fi xed true, // default for paraneter/constant;
false; // default for other variables

equation
assert(value = mn and value <= nmax, "Variable value out of limt");
end | nteger;

type Bool ean
Bool eanType val ue; /1 Accessed wi thout dot-notation
par anet er Bool eanType start false; // Initial value
par anet er Bool eanType fi xed true, [/ default for paraneter/constant;
false, // default for other variables

end Bool ean;

type String
StringType val ue; /1l Accessed without dot-notation
paraneter StringType start =""; /1 Initial value

end String;

The attributes “start” and “fixed” define the initial conditions for a variable for analysisType = "static".
“fixed=false” means an initial guess, i.e., value may be changed by static analyzer. “fixed=true” means a
required value. Before other analysisTypes (such as "dynamic") are performed, the analysisType "static" has to
be carried out first. The resulting consistent set of values for ALL model variables is used as initial values for the
analysis to be performed.

The attribute “nominal” gives the nominal value for the variable. The user need not set it even though the
standard does not define a default vaJd&e nominal value can be used by an analysis tool to determine

appropriate tolerances or epsilons, or may be used for scaling. For example, the absol ute tolerance for an

integrator could be computed as “absTol = abs(nominal)*relTol/100". A default value is not provided in order
that in cases such as “a=b”, where “b” has a nominal value but not “a”, the nominal value can be propagated

to the other variable).][For external functions in C, RealType by default magsud/ e and IntegerType by

default maps to@ nt . In the mapping proposed in Annex F of the future C9X standard, RealType/double matches
the IEC 60559:1989 (ANSI/IEEE 754-1985) double format. Typically IntegerType represents a 32-bit 2-
complement signed integer.]

3.9 Intrinsiclibrary functionality

3.9.1 Built-in variabletime

All declared variables are functions of the independent variable time. Timeis abuilt-in variable availablein all
classes, which istreated as an input variable. It isimplicitly defined as:

i nput Real tine (final quantity = "Time",
final unit ="s");
The value of the start attribute of time is set to the time instant at which the simulation is started.
[Example:
Trigger an event at start time + 10 s:

paranmeter Real TO = tine.start + 10;
when tinme >= TO then

Modelica 1.3 43

end- Wﬁen;
]

Modelica Language Specification

3.9.2 Modelica built-in operators

Built-in operators of Modelica have the same syntax as afunction call. However, they do not behave as a
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation. The following operators are supported:

The time derivative of x. Variable x need to be a (non-discrete) subtype of Real.

der (x) If x isan array, the operator is applied to al elements of the array.
Returns the most appropriate analysis type for the context in which the model is
used. The analysis typeis returned as a string. The following return values are
predefined:
analysisType() "dynamic": Solveinitial value problem
"static": Solve “static” problem where all derivatives are constant and t
is fixed (e.g. trimming, equilibrium analysis)
"linear": Transform continuous part of model in a linear system.
initial () Returns true at the beginning of analysis (where time is equal to time.start
terminal() Returns true at the end of a succesful analysis.
Real elementary relations within expr are taken literally, i.e., no state or time
noEvent(expr)

event is triggered.

sample(start,interval)

Returns true and triggers time events at time instasttart +
i *interval" (i=0,1,...).During continuous integration the operata

ime

r

returns always false. The starting time “start” and the sample interval “interval”

need to be parameter expressions and need to be a subtype of Real or In

prey)

Returns the “left limit” y(®®) of variable y(t) at a time instant t. At an event
instant, y(t) is the value of y after the last event iteration at time instant t
comment below). Thpre operator can be applied if the following three

eger.

see

conditions are fulfilled simultaneously: (a) variable y is a subtype of Boolean,

Integer or Real, (b) the operator is applied when body or y is declared as
discrete, (c) the operator isot applied in dunction class. At the initial time
pre(y) = y.start, i.e., the left limit of y is identical to the start value.

edge(b)

Is expanded into “(land not pre(b))” for Boolean variable b. The same

restrictions as for there operator apply (e.g. not to be used in function classes).

change(v)

Is expanded into “(v<>pre(v))”. The same restrictions as for the pre() operator

apply.

reinit(x, expr)

Reinitializes state variable x with expr at an event instant. Argument X nee

d to be

(a) a subtype of Real and (b) tther -operator need to be applied to it. expr need

to be an Integer or Real expression. The reinit operator can only be applig
for the same variable x.

abs(v) Is expanded into ff v >= Othen v else —v)". Argument v needs to be an Integ
or Real expressioffiNote, outside of a when clause state events are triggered] .
Is expanded into f{ v > Othen 1 elseif v < Othen —1else 0)”. Argument v
sign(v) needs to be an Integer or Real expresgidote, outside of a when clause state

events are triggered)]

d once

jer

Modelica 1.3

Modelica Language Specification

Returns the square root of v if v>=0, otherwise an error occurs. Argument v

sart(v) needs to be an Integer or Real expression.

Returns the algebraic quotient x/ y with any fractional part discarded (also
known as truncation toward zero). Result and arguments shall have type Real.
div(x,y) [Note: thisis defined for / in C9X; in Standard C the result for negative numbers
is implementation-defined, so the standard function di v() must be used.].

The input arguments need to be discrete expressions.

Returnsthe integer remainder of x/ y, suchthatdi v(x,y) * y + rem(x,
rem(x,y) y) = X.Result and arguments shall have type Real.
The input arguments need to be discrete expressions.

Returns the smallest integer not less than x. Result and argument shall have type

cell(x) Real. The input argument needs to be a discrete expression.
floor () Returns the largest integer not greater than x. Result and argument shall have

type Real. The input argument needs to be a discrete expression.

Returns the largest integer not greater than x. The argument shall have type Real.
integer (x) The result has type Integer.
The input argument needs to be a discrete expression.

Returns "expr(time — delayTime)" for

time > time.start + delayTime and "expr(time.start)" for

time <= time.start + delayTime . The arguments, i.e., expr,
delay(expr,delayTime,delayMax) |qelayTime and delayMax, need to be subtypes of Real. DelayMax needs to be
delay(expr,delayTime) additionally a parameter expression. The following relation shall hold: 0 <=

delayTime <= delayMax , otherwise an error occurs. If delayMax is

not supplied in the argument list, delayTime need to be a parameter

expression.

Returns the number of (internal and external) occurrences of connector instance

cardinality(c) C in a connect statement as an I nteger number.

A new event is triggered if at least for one variabl@refv) <> v’ after the active model equations are

evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence is called
“event iteration”. The integration is restarted, if for all v usedpire-operators the following condition holds:

“pre(v) ==V

[If vand pre(v) are only used in when clauses, the translator might mask event iteration for variable v since v

cannot change during event iteration. It is a “quality of implementation” to find the minimal loops for event
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows that mixed algebraic systems of equations occur where the unknown variables are of type
Real, Integer or Boolean. These systems of equations can be solved by a global fix point iteration scheme,
similarly to the event iteration, by fixing the Boolean and Integer unknowns during one iteration. Again, it is a
quality of implementation to solve these systems more efficiently, e.g., by applying the fix point iteration scheme
to a subset of the model equations.]

Thereinit operator does not break the single assignment rule, because r einit(x,expr) makes the previousy
known state variable x unknown and introduces the equation “x = expr”.

[If a higher index systemis present, i.e. constraints between state variables, some state variables need to be
redefined to non-state variables. If possible, non-state variables should be chosen in such a way that states with
an applied reinit operator are not utilized. If thisis not possible, an error occurs, because the reinit operator is
applied on a non-state variable.

Examples for the usage of the reinit operator:

Bouncing ball:

Modelica 1.3 45

Modelica Language Specification

der (h) v;

der(v) = -g;

when h < 0 then
reinit(v, -e*v);

end when;

Self-initializing block:
bl ock PT1 " first order filter"
paranmeter Real T "tinme constant “;
paraneter Real k "gain";
i nput Real u;
out put Real v;
pr ot ect ed
Real x;
equati on
der(X)=(u—-x)/T;
y =k*x;
when initial () then
reinit(x, u); /linitialize, such that der (x) = 0.
end when
end PT1;

nodel Test
PT1 bl, b2, b3;
i nput u;
equation
bl.u=u;
connect (bl.y, b2.u);
connect (b2.y, b3.u);
end Test;

Given theinput signal u, all 3 blocks b1, b2, b3 areinitialized at their stationary value.]

[The abs and sign operator trigger state events if used outside of a when clause. If thisis not desired, the
noEvent function can be applied to them. E.g. noEvent(abs(v)) is |v|

Thediv, rem, ceil, floor, integer operators require discrete expressions as input arguments, i.e., these functions
can be either called in when clauses or the input arguments need to be discrete variables. The reason for this
restriction is that these operators are not differentiable, i.e., the partial derivatives of the result with respect to
the input arguments are no continuous functions. Since thisis a pre-requisite for continuous integration, it must
be guaranteed that these operators are not called during continuous integration or if they are called, produce
always the same resullt.

The delay operator allows a numerical sound implementation by interpolating in the (internal) integrator
polynomials, aswell as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr . Without further information, the complete time history of the delayed signals need to be
stored, because the delay time may change during simulation. To avoid excessive storage requirements and to
enhance efficiency, the maximum allowed delay time has to be given via del ay Max. This gives an upper bound
on the values of the delayed signals which have to be stored. For realtime simulation where fixed step size
integrators are used, thisinformation is sufficient to allocate the necessary storage for the internal buffer before
the simulation starts. For variable step size integrators, the buffer sizeis dynamic during integration. In
principal, a delay operator could break algebraic loops. For simplicity, thisis not supported because the
minimum delay time has to be give as additional argument to be fixed at compile time. Furthermore, the
maximum step size of the integrator islimited by this minimum delay time in order to avoid extrapolation in the
delay buffer.

The cardinality operator allows the definition of connection dependent equations in a model, for example:

connect or Pin

Modelica 1.3 46

Real v;
flow Real i;
end Pin;
nodel Resi stor
Pin p, n;
equati on
/1l Handl e cases if pins are not connected

11

if cardinality(p) ==
p.v =0; n.v = 0;

else if cardinality(p) == 0 then
p.i = 0;

else if cardinality(n) == 0 then
n.i =0;

end if

Equati ons of resistor

end Resistor;

and cardinality(n)

Modelica Language Specification

== 0 then

Modelica 1.3

47

Modelica Language Specification

4 Mathematical description of Hybrid
DAESs

In this section, the mapping of a Modelica model into an appropriate mathematical description form is discussed.

The result of the modeling processis a set of ordinary differential equations, often accompanied with algebraic
constraint equations, thus forming a set of Differential and Algebraic Equations (DAE). Theinitial values of the
state variables need to be specified, implying that the DAE is mathematically formulated as a so-called Initial
Vaue Problem. This DAE is used for simulation or other analysis activities. DAEs may have discontinuities or
the structure of a DAE may change at certain points in time. Such types of DAESs are called hybrid DAEs. Events
are used to stop continuous integration at discontinuities of a hybrid DAE. After applying the discontinuous
change, the integration is restarted. A hybrid DAE is mathematically described by a set of equations of the form

(l1a) Residue Equations: O f(dx/dt, x, y, t, m, df/[dx/dt;y] isregular

(1b) Monitor Functions: z:= g(dx/dt, x, y, t, m

(1c) Update Equations : O h(dx/dt, xknow —xreinit vt m pre(m)
Additionally, every equation is a function of the parameters p and of the input functions u(t). This dependency is
not explicitly shown in (1) for clarity of the equations. The variables have the following meaning:

t time, the independent (real) variable.

X (Real) variables appearing differentiated (x™*"is the part of x which is always known; x®" is the other part of
X whichisreinitialized at an event instant).

y(t) (Real) agebraic variables.
u(t) known (Real) functions of time.

discrete variables of type Real, Boolean or Integer defining the current mode.

m pre(m) are the values of m immediately before the current event occurred.

p parameters, i.e., variables without any time-dependency.

The residue equations (1a) are used for continuous integration. During integration, the discrete variablesm are
not changed. The monitor functions (1b) are also evaluated during continuous integration. If one of the signals z
crosses zero, the integration is halted and an event occurs. The special case of atimeevent,"z=t-t.", isaso
included. For efficiency reasons, time events are usually treated in a specia way, since the timeinstant of such
an event is known in advance. At every event instant, the update functions (1c) are used to determine new values
of the discrete variables and of new initial valuesfor the states x. The change of discrete variables may
characterize a new structure of a DAE where elements of the state vector x are disabled. In other words, the
number of state variables, algebraic variables and residue equations of a DAE may change at event instants by
disabling the appropriate part of the DAE. For clarity of the equations, thisis not explicitly shown by an
additional index in (1).

At an event instant, including the initial event, the model equations are reinitialized according to the following
iteration procedure:

| oop
sol ve
0 :f(dX/dt, anown’ Xreinit, Y, t, n,)
0 = h(dx/dt, xknown xreinto y t, m pre(nm)
for dx/dt, x™"t y m where xk" t pre(m are fixed
if m==pre(m then break

pre(m :=m

Modelica 1.3 48

Modelica Language Specification

end | oop

At every iteration a set of mixed Real, Boolean, Integer equations (1a),(1¢) has to be solved for the indicated
variables. In order that thisis possible, at least the Jacobian of (1a) needsto be regular, as it was stated in (14).
This set of equations can e.g. be solved by a global fixed point iteration scheme which can be combined with the
event iteration:

| oop
solve * 0= f(dx/dt, — xkmown —xreinit .yt m”
ford x/dt, 'y, where xknown —xreinit t - mare fixed
solve “ 0= h(dx/dt, —xkow xrentoy it m pre(m)”
for x'ent mwhered x/dt, |y, xXnown pre(m are fixed
if m== pre(m then break
pre(m = m
end loop

The hybrid DAE (1) is not the most general one, but it has a clearly defined view and structure. Especialy, (1a)
can be transformed into state space form, at least numerically, since the Jacobian is required to be regular.
Generalizations are possible in the direction of higher index DAESs where the Jacobian of (1a) issingular. This
leads to additional difficulties during integration and especially for event restart because the non-linear equation
cannot be solved due to the singular Jacobian. Other generalizations concern the determination of theinitial
configuration by allowing the specification of any variable at theinitial time and by calculating the remaining
ones. A third generalization may use other algorithms to determine a consistent configuration after an event
occurred, e.g., by solving a complementary problem, see (Pfeiffer and Glocker 1996) for details. For a certain
class of higher index DAE systems, algorithms are available to automatically differentiate selected equations of
(1a), choose appropriate variables to be no longer states (= dummy derivative method) and transform to a DAE
(1) with aregular Jacobian.

The Modelicalanguage alows a direct and convenient specification of physical systems. A Modelica translator
maps a Modelica model into a hybrid DAE (1), or in one of its generalizations if these are available. The
mapping into (1) is straightforward by expanding al class definitions (flattening the inheritance tree) and adding
the equations and assignment statements of the expanded classes for every instance of the model to (1). The
resulting hybrid DAE usually contains a huge number of sparse equations. Therefore, direct smulation of a
hybrid DAE (1) which was generated by a Modelica trandator requires sparse matrix methods.

There are several simulation environments available, such as Allan, Dymola, gPROMS, Ida (NMF) or Omola,
which preprocess (1) symbolically to arrive at aform which can be evaluated more efficiently by numerical
algorithms. Especially, efficient graph-theoretical algorithms are available to transform (1) automatically into the
following form which is called sorted hybrid DAE:

(2a) Residue Equations: 0= frdx'/dt, y',xt m,

(2b) Exp. dx-Functions: d xe/dt:= fXdx'/dt, y',xt m

(2¢) Exp. y-Functions : ye= fydx'/dt y', xt m
(2d) Monitor Functions: o z:= g@dx'/dt oy xt om
(2e) Update Equations : [mx"eMt = h(dx'/dt, y', x<"O t m pre(m)

where the vector of algebraic variablesy is split into implicit variables y' and explicitly solvable algebraic
variables y®. The vector of state derivatives dx/dt is split into implicit variables dx'/dt and explicitly solvable
variables dx*/dt, respectively. When using an implicit integrator, only equations (2a,2b) need to be solved during
continuous integration. Equations (2c) are effectively hidden from the solver. They need only be evaluated for
external usage (e.g., to store output points to be plotted). At initial time and at events, the non-linear equation of
reduced dimension (2a) has to be solved. Again the dimension of the original equations has reduced
considerably. It isalso possible to use explicit integration methods, such as Runge-Kutta algorithms. During
continuous integration, the integrator provides x and t. The model function solves (2a) for the implicit variables,
uses the result to evaluate (2b) and returns the compl ete vector of state derivatives dx/dt. This procedure is useful
for real-time simulation where only explicit one-step methods can be used and for non-stiff systems where the
number of implicit equationsis small and/or linear.

To summarize, a Modelica translator maps a Modelica model into the hybrid DAE (1). By a subsequent
symbolic processing, (1) can be transformed into the sorted hybrid DAE (2).

Modelica 1.3 49

Modelica Language Specification

5 Unit expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica are conform with the
international standards 1SO 31/0-1992 " General principles concerning quantities, units and symbols" and SO
1000-1992 "SI units and recommendations for the use of their multiples and of certain other units".
Unfortunately, neither these two standards nor other existing or emerging 1SO standards define aformal syntax
for unit expressions. There are recommendations and Modelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" " Lrad", "mm/s".

5.1 The Syntax of unit expressions

uni t _expression:
unit_nunerator ["/" unit_denomi nator]

uni t _nunerator:
"1" | unit_factors | "(" unit_expression ")"

uni t _denomi nat or:

unit_factor | "(" unit_expression ")"
The unit of measure of adimension free quantity is denoted by "1". The | SO standard does not define any
precedence between multiplications and divisions. The SO recommendation is to have at most one division,
where the expression to the right of "/" either contains no multiplications or is enclosed within parentheses. It is
also possible to use negative exponents, for example, "J/(kg.K)" may be written as "J.kg-1.K-1".

unit_factors:
unit_factor [unit_rmulop wunit_factors]

uni t _mul op:

The ISO standard allows that a multiplication operator symbol is left out. However, Modelica enforces the |SO
recommendation that each multiplication operator is explicitly written out in formal specifications. For example,
Modelica does not support "Nm" for newtonmeter, but requires it to written as"N.m".

The preferred 1SO symbol for the multiplication operator is a"dot" abit above the baseline: "*'. Modelica

supports the | SO alternative ".", which is an ordinary "dot" on the base line.

unit_factor:
unit_operand [unit_exponent]

uni t _exponent:

["+" | "-" 1 integer
The 1SO standard does not define any operator symbol for exponentiation. A unit_factor consists of a
unit_operand possibly suffixed by a possibly signed integer number, which isinterpreted as an exponent. There
must be no spacing between the unit_operand and a possible unit_exponent.
uni t _operand:

unit_synbol | unit_prefix unit_synbol

uni t _prefix:
Y| Z| El P T| G| M| k| h|]da]d|]c|m[ul|]p|]f]alz]|
y

Modelica 1.3 50

Modelica Language Specification

A unit_symbol isastring of letters. A basic support of unitsin Modelica should know the basic and derived units
of the SI system. It is possible to support user defined unit symbols. In the base version Greek lettersis not
supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second alternative
assuming a prefixed operand should be exploited. There must be no spacing between the unit_symbol and a
possible unit_prefix. The value of the prefixes are according to the ISO standard. The letter "u" isused asa
symbol for the prefix micro.

5.2 Examples

» Theunit expression "m" means meter and not milli (10°3), since prefixes cannot be used in isolation. For
millimeter use "mm" and for squaremeter, m?, write "m2".

« Theexpression "mm2" means mm? = (10m)? = 10°m? Note that exponentiation includes the prefix.

The unit expression "T" means Tesla, but note that the letter "T" is aso the symbol for the prefix tera
which has amultiplier value of 10%.

Modelica 1.3 51

Modelica Language Specification

6 External function interface

6.1 Overview

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has a return
value or returnsits result via output parameters (or both). The Modelica external function call interface provides
the following:

e Support for external functionswritten in C and FORTRAN 77. Other languages, e.g. C++ and
Fortran 90, may be supported in the future.

* Mapping of argument types from Modelicato the target language and back.

» Natura type conversion rulesin the sense that there is a mapping from Modelica to standard libraries of
the target language.

* Handling arbitrary parameter order for the external function.

» Passing arraysto and from external functions where the dimension sizes are passed as explicit integer
parameters.

» Handling of external function parameters which are used both for input and output.

The format of an external function declaration is as follows.
function | DENT string_coment

{ conponent _cl ause ";" }
[protected { component _clause ";" }]
external [|anguage_specification] [external _function_call] ";"
[annotation ";"]
end | DENT;

Componentsin the public part of an external function declaration shall be declared either asinput or output.
[Thisisjust asfor any other function. The componentsin the protected part allows local variables for temporary
storage to be declared.]

The language-specification must currently be one of " C' or " FORTRAN 77" . Unlessthe external languageis
specified, it is assumed to be C.

The external-function-call specification alows functions whose prototypes do not match the default assumptions
as defined below to be called. It also gives the name used to call the external function. If the external call is not
given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressionsin the argument list are identifiers, scalar constants, and the function
si ze applied to an array and a constant dimension number.The annotations are used to pass additional
information to the compiler when necessary. Currently, the only supported annotationisar r ayLayout , which
can be either "r owiVaj or " or "col unmMaj or ".

6.2 Argument type mapping

The arguments of the external function are declared in the same order as in the Modelica declaration, unless
specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are passed in the
same way as outputs, whereas constants and size-expression are passed as inputs.

Modelica 1.3 52

Modelica Language Specification

6.2.1 Simple types

Arguments of simple types are by default mapped as follows for C:

Modelica C
Input Output
Real doubl e doubl e *
I nt eger i nt int *
Bool ean int int *
String const char * Not allowed.
An exception is made when the argument is of the form size(..., ...) . Inthiscase the corresponding C-typeis

size t

Strings are NUL-terminated to facilitate calling of C functions. Currently, returning strings from external C-
functionsis not supported.

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output
Real DOUBLE PRECISION DOUBLE PRECISION
Integer INTEGER INTEGER
Boolean L OGICAL LOGICAL

Passing strings to FORTRAN 77 subroutines/functionsis currently not supported.
6.2.2 Arrays

Unless an explicit function call is present in the external declaration, an arraysis passed by its address followed
by n arguments of type size_t with the corresponding array dimension sizes, where n is the number of
dimensions. [Thetypesize_t isa C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order when
caling FORTRAN 77 functions. These defaults can be overridden by the array layout annotation. See the
example below.

The table below shows the mapping of an array argument in the absence of an explicit external function call
when calling a C function. The type T isalowed to be any of the simple types which can be passed to C as
defined in section 6.2.1 or arecord type as defined in section 6.2.3 and it is mapped to the type T’ asdefined in
these sections.

Modelica C
Input and Output
T dim4] T *, size_t dim,
T dim 4, dim>,] T *, size_t dim,, size_t dm,
T dimy, ..., dim)] T *, size_t dimq, ..., size_t dim

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit external
function call is similar to the one defined above for C: first the address of the array, then the dimension sizes as
integers. See the table below. The type T is allowed to be any of the simple types which can be passed to
FORTRAN 77 as defined in section 6.2.1 and it is mapped to the type T’ as defined in that section.

Modelica 1.3 53

Modelica Language Specification

Modelica FORTRAN 77
Input and Output
T di m] T', INTEGER dim,
T[dim 1, dim ;] T', I NTEGER dimi, | NTEGER dim,
T dimy, ..., dim] T', INTEGER dimy, ..., INTEGER di m,

[The following two examplesillustrate the default mapping of array arguments to external C and FORTRAN 77
functions.
function foo
i nput Real a[;,.,];
out put Real x;
ext ernal ;
end foo;

The corresponding C prototype is as follows:
double foo(double *, size t, size t, size_t);
If the external function iswritten in FORTRAN 77, i.e.:

function foo

i nput Real a[.,.,];

out put Real x;

ext er nal "FORTRAN 77";
end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTION foo(a, d1, d2, d3)
DOUBLE PRECISION(d1,d2,d3) a

INTEGER d1

INTEGER d2

INTEGER d3

DOUBLE PRECISION foo
END

]

When an explicit call to the external function is present, the array and the sizes of its dimensions must be passed
explicitly.

[This example shows how to arrays can be passed explicitly to an external FORTRAN 77 function when the
default assumptions are unsuitable.

functi on foo
i nput Real x[];
i nput Real y[size(x,1),:];
i nput Integer i;
out put Real ul[size(y,1)];
out put Integer u2[size(y,2)];
ext er nal "FORTRAN 77" myfoo(x, y, size(x,1), size(y,2),
ul, i, u2);
end foo;
The corresponding FORTRAN 77 subroutine would be declared as follows:
SUBROUTINE myfoo(x, y, h, m, ul, i, u2)

DOUBLE PRECISION(n) X
DOUBLE PRECISION(n,m) y

Modelica 1.3 54

Modelica Language Specification

| NTEGER n

| NTEGER m
DOUBLE PRECI SION(n) ul
| NTEGER i

DOUBLE PRECI SI ON(m) u2

END
This example shows how to pass an array in column major order to a C function.
function fie
input Real[:,:] a;
out put Real b;
ext ernal ;
annot ati on(arraylLayout = "col unmMaj or");
end fie;
This corresponds to the following C-prototype:
doubl e fie(double *, size t, size t);

]
6.2.3 Records

Mapping of record typesis only supported for C. A Modelicarecord class that contains simple types, other
record elements, or arrays with fixed dimensions thereof, is mapped as follows:

* Therecord classis represented by astruct in C.

» Each element of the Modelicarecord is mapped to its corresponding C representation.
The elements of the Modelicarecord class are declared in the same order in the C struct.

» Arraysare mapped to the corresponding C array, taking the default array layout or any explicit
arr ayLayout -directive into consideration.

» Records are passed by reference (i.e. a pointer to the record is being passed).

For example,
record R struct R {
Real x; doubl e x;
I nteger y[10]; is mapped to i nt y[10];
Real z; doubl e z;
end R };

6.3 Return type mapping

If there isasingle output parameter and no explicit call of the external function, or if there is an explicit external
call in the form of an equation, in which case the LHS must be one of the output parameters, the external routine
is assumed to be a value-returning function. Mapping of the return type of functionsis performed asindicated in
the table below. Storage for arrays as return valuesis allocated by the calling routine, so the dimensions of the
returned array are fixed at call time. Otherwise the external function is assumed not to return anything; i.e, itis
really aprocedure or, in C, avoi d-function. [In this case, argument type mapping according to section 6.2 is
performed in the absence of any explicit external function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77
Real doubl e DOUBLE PRECI SI ON
I nt eger i nt I NTEGER

Modelica 1.3 55

Modelica Language Specification

Bool ean i nt LOGE CAL
Mdim,..., dim)] T * T
Record See section 6.2.3. Not allowed.

The element type T of an array can be any simple type as defined in section 6.2.1 or, for C, arecord type as
defined in section 6.2.3. The element type T is mapped to thetype T’ as defined in these sections.

6.4 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An external
function is not allowed to internally change the inputs (even if they are restored before the end of the function).
[Example;
function foo
i nput Real x;
i nput Real v;
out put Real z:=x;
external "FORTRAN 77" nyfoo(x,y, z);
end foo;

The following Modelica function:

function f
i nput Real a;
out put Real b;

al gorithm
b: =f oo(a, a);
b: =f oo(b, 2*b) ;

end f;

can on most systems be transformed into the following C function

doubl e f(double a) {
extern voi d nyfoo_(doubl e*, doubl e*, doubl e*);
doubl e b, tenpl, tenp2;
nyfoo_(&a, &a, &b);
tenpl=2*b;
t enp2=b;
nyfoo_(&b, & enpl, & enp2);
return tenpz;
}

The reason for not allowing the external function to change the inputsisto ensure that inputs can be stored in
static memory and to avoid superfluous copying (especially of matrices). If the routine does not satisfy the
requirements the interface must copy the input argument to a temporary. Thisisrare but occurs e.g. in dormiqin
some Lapack implementations. In those special cases the writer of the external interface have to copy the input
to atemporary. If thefirst input was changed internally in myfoo the designer of the interface would have to
change the interface function “foo” to:

function foo
i nput Real x;
protected Real xtenp:=x; // Temporary used because myfoo changesitsinput
public input Real vy;
out put Real z;
external "FORTRAN 77" nyfoo(xtenp,vy, z);
end foo;

Note that we discuss input arguments for Fortran-routines even though Fortran 77 does not formally have input
arguments and forbid aliasing between any pair of arguments to a function (section 15.9.3.6 of X3J3/90.4). For
the few (if any) Fortran 77 compilers that strictly follow the standard and are unable to handle aliasing between
input variables the tool must transform the first call of foo into

Modelica 1.3 56

Modelica Language Specification

tenpl=a; /* Tenporary to avoid aliasing */
nyfoo_(&a, & enpl, &b);

The use of the function foo in Modelica is uninfluenced by these considerations.]

6.5 Examples

6.5.1 Input parameters, function value

[Here all parameters to the external function are input parameters. One function value isreturned. If the
external language is not specified, the default is"C", as below.

function foo

i nput Real X;
i nput Integer vy;
out put Real W,
ext ernal ;

end foo;

This corresponds to the following C-prototype:
doubl e foo(double, int);
Example call in Modélica:
z = foo(2.4, 3);
Trandated call in C:
z = foo(2.4, 3);

6.5.2 Arbitrary placement of output parameters, no external function value

In the following example, the external function call is given explicitly which allows passing the argumentsin a
different order than in the Modelica version.

function foo

i nput Real X;
i nput Integer v;
out put Real ul;

out put Integer u2;
external "C' nyfoo(x, ul, y, u2);
end foo;

This corresponds to the following C-prototype:

voi d nyfoo(double, double *, int, int *);
Example call in Modélica:

(z1,i2) = foo(2.4, 3);
Trandated call in C:

nmyfoo(2.4, &1, 3, & 2);

6.5.3 External function with both function value and output variable

The following external function returns two results: one function value and one output parameter value. Both
are mapped to Modelica output parameters.

function foo

i nput Real X;
i nput Integer vy;
out put Real funcval ue;

out put I nteger outl,;
external "C' funcvalue = nyfoo(x, y, outl);
end foo;

Modelica 1.3 57

This corresponds to the following C-prototype:
doubl e nyfoo(double, int, int *);
Example call in Modelica:
(z1,i2) = foo(2.4, 3);
Trangdated call in C:
z1l = nyfoo(2.4, 3, & 2);

Modelica Language Specification

Modelica 1.3

58

Modelica Language Specification

/7 Modélicastandard library

The pre-defined, free "package Modelica’ is shipped together with a Modelica translator. It is an extensive
standard library of pre-defined componentsin several domains. Futhermore, it contains a standard set of type
and interface definitions in order to influence the trivial decisions of model design process. If, as far as possible,
standard quantity types and connectors are relied on in modeling work, model compatibility and thereby reuseis
enhanced. Achieving model compatibility, without having to resort to explicit coordination of modeling
activities, is essentia to the formation of globally accessible libraries. Naturally, a modeller is not required to use
the standard library and may also add any number of local base definitions.

Thelibrary will be amended and revised as part of the ordinary language revision process. It is expected that
informal standard base classes will develop in various domains and that these gradually will be incorporated into
the Modelica standard library.

The type definitionsin the library are based on SO 31-1992. Several |SO quantities have long names that tend
to become awkward in practical modeling work. For this reason, shorter alias-names are also provided if
necessary. Using, e.g., "ElectricPotential" repeatedly in a model becomes cumbersome and therefore "Voltage”
isalso supplied as an aternative.

The standard library is not limited to pure Sl units. Whenever common engineering practice uses a different set
of (possibly inconsistent) units, corresponding quantities will be allowed in the standard library, for example
English units. It is also frequently common to write models with respect to scaled Sl unitsin order to improve
the condition of the model equations or to keep the actual values around one for easier reading and writing of
numbers.

The connectors and partial models have predefined graphical attributes in order that the basic visual appearance
isthe samein all Modelica based systems.

The complete Modelica package can be downloaded. Below, the introductory documentation of thislibrary is
given together with links to the subpackages. Note, that the Modelica package is still under devel opment.

package Modelica
package Info
/* The Modelica package is a standardized, pre-defined and free
package, that is shipped together with a Modelica translator. The
package provides constants, types, connectors, partial models and
model components in various disciplines.

In the Modelica package the following conventions are used:

- Class and instance names are written in upper and lower case
letters, e.g., "ElectricCurrent". An underscoreis only used
at the end of a name to characterize a lower or upper index,
e.g., body low_up.

- Type names start always with an upper case letter.
Instance names start always with a lower case letter with only
afew exceptions, such as"T" for atemperature instance.

- A package XXX hasits interface definitions in subpackage
XXX.Interface, e.g., Electric.Interface.

- Preferred instance names for connectors:

Modelica 1.3 59

p,n: positive and negative side of a partial model.
a,b: side"a' and side"b" of apartial model
(= connectors are completely equivalent).
The following subpackages are available;

GENERAL PACKAGES

Constant Mathematical and physical constants
Math Mathematical functions
Slunit Sl-unit type definitions
FORMALISM PACKAGES
BlockDiagram Input/output blocks
BondGraph Bond graph components
FiniteStateMachine Finite state machine
PetriNet One-token petri-nets.
GENERAL DOMAINS
Electric Electric and electronic components
Mechanics 1D and 3D mechanical components
ThermoFuid 1D thermo-fluid components

DOMAIN PACKAGES

Modelica Language Specification

Aircraft Aircraft components
Building Energy balance of building components
DriveTrain Planetary gearboxes, clutches
ElectricPower Generators, motors, electric line
Hydraulics Hydraulic components
*/
end Info;
end Modelica;
Modelica1.3 60

	Introduction
	Overview of Modelica
	Scope of the specification
	Definitions and glossary

	Modelica syntax
	Lexical conventions
	Grammar

	Model definition
	Class definition
	Extends
	Component clause
	Modification
	Equations
	Expressions
	Modelica semantics
	Fundamentals

	Scoping and name lookup
	
	
	Parents
	Static name lookup
	Dynamic name lookup

	Environment and modification
	
	
	Environment
	Merging of modifications
	Single modification
	Instantiation order

	Subtyping and type equivalence
	
	
	Subtyping of classes
	Subtyping of components
	Type equivalence
	Type identity
	Ordered type identity
	Function Type Identity

	Classes on external files
	Declarations

	Component clause
	Variability prefix
	Protected variables
	Expressions
	Vectors, Matrices, and Arrays
	
	
	Array declarations
	Built-in Functions for Array Expressions
	Vector, Matrix and Array Constructors
	Array Construction
	Array Concatenation
	Array Concatenation along First and Second Dimensions
	Vector Construction

	Array access operator
	Scalar, vector, matrix, and array operator functions
	Numeric Type Class
	Equality and Assignment of type classes
	Addition and Subtraction of numeric type classes
	Scalar Multiplication of numeric type classes
	Matrix Multiplication of numeric type classes
	Scalar Division of numeric type classes
	Exponentiation of Scalars of numeric type classes
	Scalar Exponentiation of Square Matrices of numeric type classes
	Slice operation
	Relational operators
	Functions
	Empty Arrays

	Final element modification
	Short class definition
	Local class definition
	Extends clause
	Redeclaration
	Equations

	Equation clause
	If clause
	
	
	
	end ThrowingBall;

	Generation of connection equations
	Restrictions

	Functions
	Evaluation
	
	
	equation

	Events and Synchronization
	Restricted classes

	Variable attributes
	Intrinsic library functionality
	Mathematical description of Hybrid DAEs
	Unit expressions
	The Syntax of unit expressions
	Examples
	External function interface
	Overview
	Argument type mapping
	Return type mapping
	Aliasing
	Examples
	Modelica standard library

