

PFR Blueprint

Terence Tao

December 2, 2025

Chapter 1

Applications of Jensen's inequality

In this chapter, h denotes the function $h(x) := x \log \frac{1}{x}$ for $x \in [0, 1]$.

Lemma 1.1 (Concavity). *h is strictly concave on $[0, \infty)$.*

Proof. Check that h' is strictly monotone decreasing. \square

Lemma 1.2 (log sum inequality). *If S is a finite set, and a_s, b_s are non-negative for $s \in S$, then*

$$\sum_{s \in S} a_s \log \frac{a_s}{b_s} \geq \left(\sum_{s \in S} a_s \right) \log \frac{\sum_{s \in S} a_s}{\sum_{s \in S} b_s},$$

with the convention $0 \log \frac{0}{b} = 0$ for any $b \geq 0$ and $0 \log \frac{a}{0} = \infty$ for any $a > 0$.

Proof. Let $B := \sum_{s \in S} b_s$. Apply Jensen and Lemma 1.1 to show that $\sum_{s \in S} \frac{b_s}{B} h\left(\frac{a_s}{b_s}\right) \geq h\left(\frac{\sum_{s \in S} a_s}{B}\right)$. \square

Lemma 1.3 (converse log sum). *If equality holds in Lemma 1.2, then $a_s = r \cdot b_s$ for every $s \in S$, for some constant $r \in \mathbb{R}$.*

Proof. By the fact that h is strictly concave and the equality condition of Jensen. \square

Chapter 2

Shannon entropy inequalities

Random variables in this paper are measurable maps $X : \Omega \rightarrow S$ from a probability space Ω to a measurable space S , and called S -valued random variables. In many cases we will assume that singletons in S are measurable. Often we will restrict further to the case when S is finite with the discrete σ -algebra, which of course implies that S has measurable singletons.

Definition 2.1 (Entropy). *If X is an S -valued random variable, the entropy $\mathbb{H}[X]$ of X is defined*

$$\mathbb{H}[X] := \sum_{s \in S} \mathbb{P}[X = s] \log \frac{1}{\mathbb{P}[X = s]}$$

with the convention that $0 \log \frac{1}{0} = 0$.

Lemma 2.2 (Entropy and relabeling).

- (i) *If $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are random variables, and $Y = f(X)$ for some injection $f : S \rightarrow T$, then $\mathbb{H}[X] = \mathbb{H}[Y]$.*
- (ii) *If $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are random variables, and $Y = f(X)$ and $X = g(Y)$ for some functions $f : S \rightarrow T$, $g : T \rightarrow S$, then $\mathbb{H}[X] = \mathbb{H}[Y]$.*

Proof. Expand out both entropies and rearrange. □

Lemma 2.3 (Jensen bound). *If X is an S -valued random variable, then $\mathbb{H}[X] \leq \log |S|$.*

Proof.

This is a direct consequence of Lemma 1.1 and Jensen's inequality. □

Definition 2.4 (Uniform distribution). *If H is a subset of S , an S -random variable X is said to be uniformly distributed on H if $\mathbb{P}[X = s] = 1/|H|$ for $s \in H$ and $\mathbb{P}[X = s] = 0$ otherwise.*

Lemma 2.5 (Uniform distributions exist). *Given a finite non-empty subset H of a set S , there exists a random variable X (on some probability space) that is uniformly distributed on H .*

Proof. Direct construction. □

Lemma 2.6 (Entropy of uniform random variable). *If X is S -valued random variable, then $\mathbb{H}[X] = \log |S|$ if and only if X is uniformly distributed on S .*

Proof.

Direct computation in one direction. Converse direction needs the strict Jensen inequality and Lemma 1.1. \square

Lemma 2.7 (Entropy of uniform random variable, II). *If X is uniformly distributed on H , then, then $\mathbb{H}[X] = \log |H|$.*

Proof. Direct computation. \square

Lemma 2.8 (Bounded entropy implies concentration). *If X is an S -valued random variable, then there exists $s \in S$ such that $\mathbb{P}[X = s] \geq \exp(-\mathbb{H}[X])$.*

Proof. We have

$$\mathbb{H}[X] = \sum_{s \in S} \mathbb{P}[X = s] \log \frac{1}{\mathbb{P}[X = s]} \geq \min_{s \in S} \log \frac{1}{\mathbb{P}[X = s]}$$

and the claim follows. \square

We use X, Y to denote the pair $\omega \mapsto (X(\omega), Y(\omega))$.

Lemma 2.9 (Commutativity and associativity of joint entropy). *If $X : \Omega \rightarrow S$, $Y : \Omega \rightarrow T$, and $Z : \Omega \rightarrow U$ are random variables, then $\mathbb{H}[X, Y] = \mathbb{H}[Y, X]$ and $\mathbb{H}[X, (Y, Z)] = \mathbb{H}[(X, Y), Z]$.*

Proof. Set up an injection from (X, Y) to (Y, X) and use Lemma 2.2 for the first claim. Similarly for the second claim. \square

Definition 2.10 (Conditioned event). *If $X : \Omega \rightarrow S$ is an S -valued random variable and E is an event in Ω , then the conditioned event $(X|E)$ is defined to be the same random variable as X , but now the ambient probability measure has been conditioned to E .*

Note: it may happen that E has zero measure. In which case, the ambient probability measure should be replaced with a zero measure. (In our formalization we achieve this by working with arbitrary measures, and normalizing them to be probability measures if possible, else using the zero measure. Conditioning is also formalized using existing Mathlib definitions.)

Definition 2.11 (Conditional entropy). *If $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are random variables, the conditional entropy $\mathbb{H}[X|Y]$ is defined as*

$$\mathbb{H}[X|Y] := \sum_{y \in Y} \mathbb{P}[Y = y] \mathbb{H}[(X|Y = y)].$$

Lemma 2.12 (Conditional entropy and relabeling). *If $X : \Omega \rightarrow S$, $Y : \Omega \rightarrow T$, and $Z : \Omega \rightarrow U$ are random variables, and $Y = f(X, Z)$ almost surely for some map $f : S \times U \rightarrow T$ that is injective for each fixed U , then $\mathbb{H}[X|Z] = \mathbb{H}[Y|Z]$.*

Similarly, if $g : T \rightarrow U$ is injective, then $\mathbb{H}[X|g(Y)] = \mathbb{H}[X|Y]$.

Proof. For the first part, use Definition 2.11 and then Lemma 2.2. The second part is a direct computation. \square

Lemma 2.13 (Chain rule). *If $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are random variables, then*

$$\mathbb{H}[X, Y] = \mathbb{H}[Y] + \mathbb{H}[X|Y].$$

Proof. Direct computation. \square

Lemma 2.14 (Conditional chain rule). *If $X : \Omega \rightarrow S$, $Y : \Omega \rightarrow T$, $Z : \Omega \rightarrow U$ are random variables, then*

$$\mathbb{H}[X, Y|Z] = \mathbb{H}[Y|Z] + \mathbb{H}[X|Y, Z].$$

Proof. For each $z \in U$, we can apply Lemma 2.13 to the random variables $(X|Z = z)$ and $(Y|Z = z)$ to obtain

$$\mathbb{H}[(X|Z = z), (Y|Z = z)] = \mathbb{H}[Y|Z = z] + \mathbb{H}[(X|Z = z)|(Y|Z = z)].$$

Now multiply by $\mathbb{P}[Z = z]$ and sum. Some helper lemmas may be needed to get to the form above. This sort of “average over conditioning” argument to get conditional entropy inequalities from unconditional ones is commonly used in this paper. \square

Definition 2.15 (Mutual information). *If $X : \Omega \rightarrow S$, $Y : \Omega \rightarrow T$ are random variables, then*

$$\mathbb{I}[X : Y] := \mathbb{H}[X] + \mathbb{H}[Y] - \mathbb{H}[X, Y].$$

Lemma 2.16 (Alternative formulae for mutual information). *With notation as above, we have*

$$\mathbb{I}[X : Y] = \mathbb{I}[Y : X]$$

$$\mathbb{I}[X : Y] = \mathbb{H}[X] - \mathbb{H}[X|Y]$$

$$\mathbb{I}[X : Y] = \mathbb{H}[Y] - \mathbb{H}[Y|X]$$

Proof. Immediate from Lemmas 2.9, 2.13. \square

Lemma 2.17 (Nonnegativity of mutual information). *We have $\mathbb{I}[X : Y] \geq 0$.*

Proof.

An application of Jensen’s inequality and Lemma 1.1 and ??.

\square

Corollary 2.18 (Subadditivity). *With notation as above, we have $\mathbb{H}[X, Y] \leq \mathbb{H}[X] + \mathbb{H}[Y]$.*

Proof. Use Lemma 2.17. \square

Corollary 2.19 (Conditioning reduces entropy). *With notation as above, we have $\mathbb{H}[X|Y] \leq \mathbb{H}[X]$.*

Proof. Combine Lemma 2.17 with Lemma 2.16. \square

Corollary 2.20 (Submodularity). *With three random variables X, Y, Z , one has $\mathbb{H}[X|Y, Z] \leq \mathbb{H}[X|Z]$.*

Proof. Apply the “averaging over conditioning” argument to Corollary 2.19. \square

Corollary 2.21 (Alternate form of submodularity). *With three random variables X, Y, Z , one has*

$$\mathbb{H}[X, Y, Z] + \mathbb{H}[Z] \leq \mathbb{H}[X, Z] + \mathbb{H}[Y, Z].$$

Proof. Apply Corollary 2.20 and Lemma 2.13. \square

Definition 2.22 (Independent random variables). *Two random variables $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are independent if the law of (X, Y) is the product of the law of X and the law of Y . Similarly for more than two variables.*

Lemma 2.23 (Vanishing of mutual information). *If X, Y are random variables, then $\mathbb{I}[X : Y] = 0$ if and only if X, Y are independent.*

Proof.

An application of the equality case of Jensen's inequality and Lemma 1.1. \square

Corollary 2.24 (Additivity of entropy). *If X, Y are random variables, then $\mathbb{H}[X, Y] = \mathbb{H}[X] + \mathbb{H}[Y]$ if and only if X, Y are independent.*

Proof. Direct from Lemma 2.23. \square

Definition 2.25 (Conditional mutual information). *If X, Y, Z are random variables, with Z U -valued, then*

$$\mathbb{I}[X : Y | Z] := \sum_{z \in U} P[Z = z] \mathbb{I}[(X|Z = z) : (Y|Z = z)].$$

Lemma 2.26 (Alternate formula for conditional mutual information). *We have*

$$\mathbb{I}[X : Y | Z] := \mathbb{H}[X|Z] + \mathbb{H}[Y|Z] - \mathbb{H}[X, Y | Z]$$

and

$$\mathbb{I}[X : Y | Z] := \mathbb{H}[X|Z] - \mathbb{H}[X|Y, Z].$$

Proof. Routine computation. \square

Lemma 2.27 (Nonnegativity of conditional mutual information). *If X, Y, Z are random variables, then $\mathbb{I}[X : Y | Z] \geq 0$.*

Proof. Use Definition 2.25 and Corollary 2.20. \square

Definition 2.28 (Conditionally independent random variables). *Two random variables $X : \Omega \rightarrow S$ and $Y : \Omega \rightarrow T$ are conditionally independent relative to another random variable $Z : \Omega \rightarrow U$ if $P[X = s \wedge Y = t | Z = u] = P[X = s | Z = u]P[Y = t | Z = u]$ for all $s \in S, t \in T, u \in U$. (We won't need conditional independence for more variables than this.)*

Lemma 2.29 (Vanishing conditional mutual information). *If X, Y, Z are random variables, then $\mathbb{I}[X : Y | Z] = 0$ iff X, Y are conditionally independent over Z .*

Proof. Immediate from Lemma 2.23 and Definition 2.28. \square

Corollary 2.30 (Entropy of conditionally independent variables). *If X, Y are conditionally independent over Z , then*

$$\mathbb{H}[X, Y, Z] = \mathbb{H}[X, Z] + \mathbb{H}[Y, Z] - \mathbb{H}[Z].$$

Proof. Immediate from Lemma 2.29 and Lemma 2.26. \square

Chapter 3

Entropic Ruzsa calculus

In this section G will be a finite additive group. (May eventually want to generalize to infinite G .)

Lemma 3.1 (Negation preserves entropy). *If X is G -valued, then $\mathbb{H}[-X] = \mathbb{H}[X]$.*

Proof. Immediate from Lemma 2.2. \square

Lemma 3.2 (Shearing preserves entropy). *If X, Y are G -valued, then $\mathbb{H}[X \pm Y|Y] = \mathbb{H}[X|Y]$ and $\mathbb{H}[X \pm Y, Y] = \mathbb{H}[X, Y]$.*

Proof. Immediate from Lemma 2.12 and Lemma 2.13. \square

Lemma 3.3 (Lower bound of sumset). *If X, Y are G -valued random variables on Ω , we have*

$$\max(\mathbb{H}[X], \mathbb{H}[Y]) - \mathbb{I}[X : Y] \leq \mathbb{H}[X \pm Y].$$

Proof. By Corollary 2.19, 3.2, 2.16, 3.1 we have

$$\mathbb{H}[X \pm Y] \geq \mathbb{H}[X \pm Y|Y] = \mathbb{H}[X|Y] = \mathbb{H}[X] - \mathbb{I}[X : Y]$$

and similarly with the roles of X, Y reversed, giving the claim. \square

Corollary 3.4 (Conditional lower bound on sumset). *If X, Y are G -valued random variables on Ω and Z is another random variable on Ω then*

$$\max(\mathbb{H}[X|Z], \mathbb{H}[Y|Z]) - \mathbb{I}[X : Y|Z] \leq \mathbb{H}[X \pm Y|Z],$$

Proof. This follows from Lemma 3.3 by conditioning to $Z = z$ and summing over z (weighted by $\mathbb{P}[Z = z]$). \square

Corollary 3.5 (Independent lower bound on sumset). *If X, Y are independent G -valued random variables, then*

$$\max(\mathbb{H}[X], \mathbb{H}[Y]) \leq \mathbb{H}[X \pm Y].$$

Proof.

Combine Lemma 3.3 with Lemma 2.23. \square

One random variable is said to be a copy of another if they have the same distribution.

Lemma 3.6 (Copy preserves entropy). *If X' is a copy of X then $\mathbb{H}[X'] = \mathbb{H}[X]$.*

Proof. Immediate from Definition 2.1. \square

Lemma 3.7 (Existence of independent copies). *Let $X_i : \Omega_i \rightarrow S_i$ be random variables for $i = 1, \dots, k$. Then if one gives $\prod_{i=1}^k S_i$ the product measure of the laws of X_i , the coordinate functions $(x_j)_{j=1}^k \mapsto x_i$ are jointly independent random variables which are copies of the X_1, \dots, X_k .*

Proof. Explicit computation. \square

Definition 3.8 (Ruzsa distance). *Let X, Y be G -valued random variables (not necessarily on the same sample space). The Ruzsa distance $d[X; Y]$ between X and Y is defined to be*

$$d[X; Y] := \mathbb{H}[X' - Y'] - \mathbb{H}[X']/2 - \mathbb{H}[Y']/2$$

where X', Y' are (the canonical) independent copies of X, Y from Lemma 3.7.

Lemma 3.9 (Distance from zero). *If X is a G -valued random variable and 0 is the random variable taking the value 0 everywhere then*

$$d[X; 0] = \mathbb{H}(X)/2.$$

Proof. This is an immediate consequence of the definitions and $X - 0 \equiv X$ and $\mathbb{H}(0) = 0$. \square

Lemma 3.10 (Copy preserves Ruzsa distance). *If X', Y' are copies of X, Y respectively then $d[X'; Y'] = d[X; Y]$.*

Proof. Immediate from Definitions 3.8 and Lemma 3.6. \square

Lemma 3.11 (Ruzsa distance in independent case). *If X, Y are independent G -random variables then*

$$d[X; Y] := \mathbb{H}[X - Y] - \mathbb{H}[X]/2 - \mathbb{H}[Y]/2.$$

Proof. Immediate from Definition 3.8 and Lemmas 2.2, 3.6. \square

Lemma 3.12 (Distance symmetric). *If X, Y are G -valued random variables, then*

$$d[X; Y] = d[Y; X].$$

Proof. Immediate from Lemma 3.1 and Definition 3.8. \square

Lemma 3.13 (Distance controls entropy difference). *If X, Y are G -valued random variables, then*

$$|\mathbb{H}[X] - \mathbb{H}[Y]| \leq 2d[X; Y].$$

Proof. Immediate from Corollary 3.5 and Definition 3.8, and also Lemma 3.1. \square

Lemma 3.14 (Distance controls entropy growth). *If X, Y are independent G -valued random variables, then*

$$\mathbb{H}[X - Y] - \mathbb{H}[X], \mathbb{H}[X - Y] - \mathbb{H}[Y] \leq 2d[X; Y].$$

Proof. Immediate from Corollary 3.5 and Definition 3.8, and also Lemma 3.1. \square

Lemma 3.15 (Distance nonnegative). *If X, Y are G -valued random variables, then*

$$d[X; Y] \geq 0.$$

Proof. Immediate from Lemma 3.13. \square

Lemma 3.16 (Projection entropy and distance). *If G is an additive group and X is a G -valued random variable and $H \leq G$ is a finite subgroup then, with $\pi : G \rightarrow G/H$ the natural homomorphism we have (where U_H is uniform on H)*

$$\mathbb{H}(\pi(X)) \leq 2d[X; U_H].$$

Proof. WLOG, we make X, U_H independent (Lemma 3.7). Now by Lemmas 2.20, 3.2, 2.3

$$\begin{aligned} \mathbb{H}(X - U_H | \pi(X)) &\geq \mathbb{H}(X - U_H | X) &= \mathbb{H}(U_H) \\ \mathbb{H}(X - U_H | \pi(X)) &\leq \log |H| &= \mathbb{H}(U_H) \end{aligned}$$

By Lemma 2.13

$$\mathbb{H}(X - U_H) = \mathbb{H}(\pi(X)) + \mathbb{H}(X - U_H | \pi(X)) = \mathbb{H}(\pi(X)) + \mathbb{H}(U_H)$$

and therefore

$$d[X; U_H] = \mathbb{H}(\pi(X)) + \frac{\mathbb{H}(U_H) - \mathbb{H}(X)}{2}.$$

Furthermore by Lemma 3.13

$$d[X; U_H] \geq \frac{|\mathbb{H}(X) - \mathbb{H}(U_H)|}{2}.$$

Adding these inequalities gives the result. \square

Lemma 3.17 (Improved Ruzsa triangle inequality). *If X, Y, Z are G -valued random variables on Ω with (X, Y) independent of Z , then*

$$\mathbb{H}[X - Y] \leq \mathbb{H}[X - Z] + \mathbb{H}[Z - Y] - \mathbb{H}[Z] \quad (3.1)$$

This is an improvement over the usual Ruzsa triangle inequality because X, Y are not assumed to be independent. However we will not utilize this improvement here.

Proof. Apply Corollary 2.21 to obtain

$$\mathbb{H}[X - Z, X - Y] + \mathbb{H}[Y, X - Y] \geq \mathbb{H}[X - Z, Y, X - Y] + \mathbb{H}[X - Y].$$

Using

$$\mathbb{H}[X - Z, X - Y] \leq \mathbb{H}[X - Z] + \mathbb{H}[Y - Z]$$

(from Lemma 2.2, Corollary 2.18),

$$\mathbb{H}[Y, X - Y] = \mathbb{H}[X, Y]$$

(from Lemma 2.2), and

$$\mathbb{H}[X - Z, Y, X - Y] = \mathbb{H}[X, Y, Z] = \mathbb{H}[X, Y] + \mathbb{H}[Z]$$

(from Lemma 2.2 and Corollary 2.24) and rearranging, we indeed obtain (3.1). \square

Lemma 3.18 (Ruzsa triangle inequality). *If X, Y, Z are G -valued random variables, then*

$$d[X; Y] \leq d[X; Z] + d[Z; Y].$$

Proof. By Lemma 3.10 and Lemmas 3.7, 3.11, it suffices to prove this inequality assuming that X, Y, Z are defined on the same space and are independent. But then the claim follows from Lemma 3.17 and Definition 3.8. \square

Definition 3.19 (Conditioned Ruzsa distance). *If (X, Z) and (Y, W) are random variables (where X and Y are G -valued) we define*

$$d[X|Z; Y|W] := \sum_{z,w} \mathbb{P}[Z = z] \mathbb{P}[W = w] d[(X|Z = z); (Y|(W = w))].$$

similarly

$$d[X; Y|W] := \sum_w \mathbb{P}[W = w] d[X; (Y|(W = w))].$$

Lemma 3.20 (Alternate form of distance). *The expression $d[X|Z; Y|W]$ is unchanged if (X, Z) or (Y, W) is replaced by a copy. Furthermore, if (X, Z) and (Y, W) are independent, then*

$$d[X|Z; Y|W] = \mathbb{H}[X - Y|Z, W] - \mathbb{H}[X|Z]/2 - \mathbb{H}[Y|W]/2$$

and similarly

$$d[X; Y|W] = \mathbb{H}[X - Y|W] - \mathbb{H}[X]/2 - \mathbb{H}[Y|W]/2.$$

Proof. Straightforward thanks to Lemma 3.6, Lemma 3.10, Lemma 3.11, Definition 3.19, Definition 2.11. \square

Lemma 3.21 (Kaimanovich-Vershik-Madiman inequality). *Suppose that X, Y, Z are independent G -valued random variables. Then*

$$\mathbb{H}[X + Y + Z] - \mathbb{H}[X + Y] \leq \mathbb{H}[Y + Z] - \mathbb{H}[Y].$$

Proof. From Corollary 2.20 we have

$$\mathbb{H}[X, X + Y + Z] + \mathbb{H}[Z, X + Y + Z] \geq \mathbb{H}[X, Z, X + Y + Z] + \mathbb{H}[X + Y + Z].$$

However, using Lemmas 2.24, 2.2 repeatedly we have $\mathbb{H}[X, X + Y + Z] = \mathbb{H}[X, Y + Z] = \mathbb{H}[X] + \mathbb{H}[Y + Z]$, $\mathbb{H}[Z, X + Y + Z] = \mathbb{H}[Z, X + Y] = \mathbb{H}[Z] + \mathbb{H}[X + Y]$ and $\mathbb{H}[X, Z, X + Y + Z] = \mathbb{H}[X, Y, Z] = \mathbb{H}[X] + \mathbb{H}[Y] + \mathbb{H}[Z]$. The claim then follows from a calculation. \square

Lemma 3.22 (Existence of conditional independent trials). *For X, Y random variables, there exist random variables X_1, X_2, Y' on a common probability space with (X_1, Y') , (X_2, Y') both having the distribution of (X, Y) , and X_1, X_2 conditionally independent over Y' in the sense of Definition 2.28.*

Proof. Explicit construction. \square

Lemma 3.23 (Balog-Szemerédi-Gowers). *Let A, B be G -valued random variables on Ω , and set $Z := A + B$. Then*

$$\sum_z \mathbb{P}[Z = z] d[(A|Z = z); (B|Z = z)] \leq 3\mathbb{I}[A : B] + 2\mathbb{H}[Z] - \mathbb{H}[A] - \mathbb{H}[B]. \quad (3.2)$$

Proof. Let (A_1, B_1) and (A_2, B_2) (and Z' , which by abuse of notation we call Z) be conditionally independent trials of (A, B) relative to Z as produced by Lemma 3.22, thus (A_1, B_1) and (A_2, B_2) are coupled through the random variable $A_1 + B_1 = A_2 + B_2$, which by abuse of notation we shall also call Z .

Observe from Lemma 3.11 that the left-hand side of (3.2) is

$$\mathbb{H}[A_1 - B_2 | Z] - \mathbb{H}[A_1 | Z]/2 - \mathbb{H}[B_2 | Z]/2. \quad (3.3)$$

since, crucially, $(A_1 | Z = z)$ and $(B_2 | Z = z)$ are independent for all z .

Applying submodularity (Corollary 2.21) gives

$$\begin{aligned} & \mathbb{H}[A_1 - B_2] + \mathbb{H}[A_1 - B_2, A_1, B_1] \\ & \leq \mathbb{H}[A_1 - B_2, A_1] + \mathbb{H}[A_1 - B_2, B_1]. \end{aligned} \quad (3.4)$$

We estimate the second, third and fourth terms appearing here. First note that, by Corollary 2.30 and Lemma 2.2 (noting that the tuple $(A_1 - B_2, A_1, B_1)$ determines the tuple (A_1, A_2, B_1, B_2) since $A_1 + B_1 = A_2 + B_2$)

$$\mathbb{H}[A_1 - B_2, A_1, B_1] = \mathbb{H}[A_1, B_1, A_2, B_2, Z] = 2\mathbb{H}[A, B] - \mathbb{H}[Z]. \quad (3.5)$$

Next observe that

$$\mathbb{H}[A_1 - B_2, A_1] = \mathbb{H}[A_1, B_2] \leq \mathbb{H}[A] + \mathbb{H}[B]. \quad (3.6)$$

Finally, we have

$$\mathbb{H}[A_1 - B_2, B_1] = \mathbb{H}[A_2 - B_1, B_1] = \mathbb{H}[A_2, B_1] \leq \mathbb{H}[A] + \mathbb{H}[B]. \quad (3.7)$$

Substituting (3.5), (3.6) and (3.7) into (3.4) yields

$$\mathbb{H}[A_1 - B_2] \leq 2\mathbb{H}[A : B] + \mathbb{H}[Z]$$

and so by Corollary 2.19

$$\mathbb{H}[A_1 - B_2 | Z] \leq 2\mathbb{H}[A : B] + \mathbb{H}[Z].$$

Since

$$\begin{aligned} \mathbb{H}[A_1 | Z] &= \mathbb{H}[A_1, A_1 + B_1] - \mathbb{H}[Z] \\ &= \mathbb{H}[A, B] - \mathbb{H}[Z] \\ &= \mathbb{H}[Z] - \mathbb{H}[A : B] - 2\mathbb{H}[Z] - \mathbb{H}[A] - \mathbb{H}[B] \end{aligned}$$

and similarly for $\mathbb{H}[B_2 | Z]$, we see that (3.3) is bounded by $3\mathbb{H}[A : B] + 2\mathbb{H}[Z] - \mathbb{H}[A] - \mathbb{H}[B]$ as claimed. \square

Lemma 3.24 (Upper bound on conditioned Ruzsa distance). *Suppose that (X, Z) and (Y, W) are random variables, where X, Y take values in an abelian group. Then*

$$d[X | Z; Y | W] \leq d[X; Y] + \frac{1}{2}\mathbb{H}[X : Z] + \frac{1}{2}\mathbb{H}[Y : W].$$

In particular,

$$d[X; Y | W] \leq d[X; Y] + \frac{1}{2}\mathbb{H}[Y : W].$$

Proof. Using Lemma 3.20 and Lemma 3.7, if $(X', Z'), (Y', W')$ are independent copies of the variables $(X, Z), (Y, W)$, we have

$$\begin{aligned} d[X|Z; Y|W] &= \mathbb{H}[X' - Y'|Z', W'] - \frac{1}{2}\mathbb{H}[X'|Z'] - \frac{1}{2}H[Y'|W'] \\ &\leq \mathbb{H}[X' - Y'] - \frac{1}{2}\mathbb{H}[X'|Z'] - \frac{1}{2}H[Y'|W'] \\ &= d[X'; Y'] + \frac{1}{2}\mathbb{I}[X' : Z'] + \frac{1}{2}\mathbb{I}[Y' : W']. \end{aligned}$$

Here, in the middle step we used Corollary 2.19, and in the last step we used Definition 3.8 and Definition 2.15. \square

Lemma 3.25 (Comparison of Ruzsa distances, I). *Let X, Y, Z be random variables taking values in some abelian group of characteristic 2, and with Y, Z independent. Then we have*

$$\begin{aligned} d[X; Y + Z] - d[X; Y] &\leq \frac{1}{2}(\mathbb{H}[Y + Z] - \mathbb{H}[Y]) \\ &= \frac{1}{2}d[Y; Z] + \frac{1}{4}\mathbb{H}[Z] - \frac{1}{4}\mathbb{H}[Y]. \end{aligned} \quad (3.8)$$

and

$$\begin{aligned} d[X; Y|Y + Z] - d[X; Y] &\leq \frac{1}{2}(\mathbb{H}[Y + Z] - \mathbb{H}[Z]) \\ &= \frac{1}{2}d[Y; Z] + \frac{1}{4}\mathbb{H}[Y] - \frac{1}{4}\mathbb{H}[Z]. \end{aligned} \quad (3.9)$$

Proof. We first prove (3.8). We may assume (taking an independent copy, using Lemma 3.7 and Lemma 3.10, 3.11) that X is independent of Y, Z . Then we have

$$\begin{aligned} d[X; Y + Z] - d[X; Y] \\ &= \mathbb{H}[X + Y + Z] - \mathbb{H}[X + Y] - \frac{1}{2}\mathbb{H}[Y + Z] + \frac{1}{2}\mathbb{H}[Y]. \end{aligned}$$

Combining this with Lemma 3.21 gives the required bound. The second form of the result is immediate Lemma 3.11.

Turning to (3.9), we have from Definition 2.15 and Lemma 2.2

$$\begin{aligned} \mathbb{I}[Y : Y + Z] &= \mathbb{H}[Y] + \mathbb{H}[Y + Z] - \mathbb{H}[Y, Y + Z] \\ &= \mathbb{H}[Y] + \mathbb{H}[Y + Z] - \mathbb{H}[Y, Z] = \mathbb{H}[Y + Z] - \mathbb{H}[Z], \end{aligned}$$

and so (3.9) is a consequence of Lemma 3.24. Once again the second form of the result is immediate from Lemma 3.11. \square

Lemma 3.26 (Comparison of Ruzsa distances, II). *Let X, Y, Z, Z' be random variables taking values in some abelian group, and with Y, Z, Z' independent. Then we have*

$$\begin{aligned} d[X; Y + Z|Y + Z + Z'] - d[X; Y] \\ &\leq \frac{1}{2}(\mathbb{H}[Y + Z + Z'] + \mathbb{H}[Y + Z] - \mathbb{H}[Y] - \mathbb{H}[Z']). \end{aligned} \quad (3.10)$$

Proof. By Lemma 3.25 (with a change of variables) we have

$$d[X; Y + Z|Y + Z + Z'] - d[X; Y + Z] \leq \frac{1}{2}(\mathbb{H}[Y + Z + Z'] - \mathbb{H}[Z']).$$

Adding this to (3.8) gives the result. \square

Chapter 4

The 100% version of PFR

Definition 4.1 (Symmetry group). *If X is a G -valued random variable, then the symmetry group $\text{Sym}[X]$ is the set of all $h \in G$ such that $X + h$ has the same distribution as X .*

Lemma 4.2 (Symmetry group is a group). *If X is a G -valued random variable, then $\text{Sym}[X]$ is a subgroup of G .*

Proof. Direct verification of the group axioms. \square

Lemma 4.3 (Zero Ruzsa distance implies large symmetry group). *If X is a G -valued random variable such that $d[X; X] = 0$, and $x, y \in G$ are such that $P[X = x], P[X = y] > 0$, then $x - y \in \text{Sym}[X]$.*

Proof. Let X_1, X_2 be independent copies of X (from Lemma 3.7). Let A denote the range of X . From Lemma 3.11 and Lemma 3.10 we have

$$\mathbb{H}[X_1 - X_2] = \mathbb{H}[X_1].$$

Observe from Lemma 2.12 that

$$\mathbb{H}[X_1 - X_2 | X_2] = \mathbb{H}[X_1 | X_2] = \mathbb{H}[X_1]$$

and hence by Lemma 2.16

$$\mathbb{I}[X_1 - X_2 : X_1] = 0.$$

By Lemma 2.23, $X_1 - X_2$ and X_1 are therefore independent, thus the law of $(X_1 - X_2 | X_1 = x)$ does not depend on $x \in A$. The claim follows. \square

Lemma 4.4 (Translate is uniform on symmetry group). *If X is a G -valued random variable with $d[X; X] = 0$, and x_0 is a point with $P[X = x_0] > 0$, then $X - x_0$ is uniformly distributed on $\text{Sym}[X]$.*

Proof. The law of $X - x_0$ is invariant under $\text{Sym}[X]$, non-zero at the origin, and supported on $\text{Sym}[X]$, giving the claim. \square

Lemma 4.5 (Symmetric 100% inverse theorem). *Suppose that X is a G -valued random variable such that $d[X; X] = 0$. Then there exists a subgroup $H \leq G$ such that $d[X; U_H] = 0$.*

Proof. Take H to be the symmetry group of X , which is a group by Lemma 4.2. From Lemma 4.4, $X - x_0$ is uniform on H , and $d[X; X - x_0] = d[X; X] \leq 0$, and the claim follows. \square

Corollary 4.6 (General 100% inverse theorem). *Suppose that X_1, X_2 are G -valued random variables such that $d[X_1; X_2] = 0$. Then there exists a subgroup $H \leq G$ such that $d[X_1; U_H] = d[X_2; U_H] = 0$.*

Proof. Using Lemma 3.18 and Lemma 3.15 we have $d[X_1; X_1] = 0$, hence by Lemma 4.5 $d[X_1; U_H] = 0$ for some subgroup H . By Lemma 3.18 and Lemma 3.15 again we also have $d[X_2; U_H] = 0$ as required. \square

Chapter 5

The Fibring lemma

Proposition 5.1 (General fibring identity). *Let $\pi : H \rightarrow H'$ be a homomorphism additive groups, and let Z_1, Z_2 be H -valued random variables. Then we have*

$$d[Z_1; Z_2] \geq d[\pi(Z_1); \pi(Z_2)] + d[Z_1|\pi(Z_1); Z_2|\pi(Z_2)].$$

Moreover, if Z_1, Z_2 are taken to be independent, then the difference between the two sides is

$$I(Z_1 - Z_2 : (\pi(Z_1), \pi(Z_2))|\pi(Z_1 - Z_2)).$$

Proof. Let Z_1, Z_2 be independent throughout (this is possible by Lemma 3.10 and Lemma 3.7). By Lemma 3.20, We have

$$\begin{aligned} & d[Z_1|\pi(Z_1); Z_2|\pi(Z_2)] \\ &= \mathbb{H}[Z_1 - Z_2|\pi(Z_1), \pi(Z_2)] - \frac{1}{2}\mathbb{H}[Z_1|\pi(Z_1)] - \frac{1}{2}\mathbb{H}[Z_2|\pi(Z_2)] \\ &\leq \mathbb{H}[Z_1 - Z_2|\pi(Z_1 + Z_2)] - \frac{1}{2}\mathbb{H}[Z_1|\pi(Z_1)] - \frac{1}{2}\mathbb{H}[Z_2|\pi(Z_2)] \\ &= d[Z_1; Z_2] - d[\pi(Z_1); \pi(Z_2)]. \end{aligned}$$

In the middle step, we used Corollary 2.20, and in the last step we used the fact that

$$\mathbb{H}[Z_1 - Z_2|\pi(Z_1 - Z_2)] = \mathbb{H}[Z_1 - Z_2] - \mathbb{H}[\pi(Z_1 - Z_2)]$$

(thanks to Lemma 2.13 and Lemma 2.2) and that

$$\mathbb{H}[Z_i|\pi(Z_i)] = \mathbb{H}[Z_i] - \mathbb{H}[\pi(Z_i)]$$

(since Z_i determines $\pi(Z_i)$). This gives the claimed inequality. The difference between the two sides is precisely

$$\mathbb{H}[Z_1 - Z_2|\pi(Z_1 - Z_2)] - \mathbb{H}[Z_1 - Z_2|\pi(Z_1), \pi(Z_2)].$$

To rewrite this in terms of (conditional) mutual information, we use the identity

$$\mathbb{H}[A|B] - \mathbb{H}[A|B, C] = \mathbb{I}[A : C|B],$$

(which follows Lemma 2.26) taking $A := Z_1 - Z_2$, $B := \pi(Z_1 - Z_2)$ and $C := (\pi(Z_1), \pi(Z_2))$, and noting that in this case $\mathbb{H}[A|B, C] = \mathbb{H}[A|C]$ since C uniquely determines B (this may require another helper lemma about entropy). This completes the proof. \square

Corollary 5.2. *If $\pi : G \rightarrow H$ is a homomorphism of additive groups and X, Y are G -valued random variables then*

$$d[X; Y] \geq d[\pi(X); \pi(Y)].$$

Proof. By Proposition 5.1 and the nonnegativity of conditional Ruzsa distance (from Lemma 3.15) we have

$$d[X; Y] \geq d[\pi(X); \pi(Y)] + d[X \mid \pi(X); Y \mid \pi(Y)].$$

The inequality follows from $d[X \mid \pi(X); Y \mid \pi(Y)] \geq 0$ (Lemma 3.15). \square

Corollary 5.3 (Specific fibring identity). *Let Y_1, Y_2, Y_3 and Y_4 be independent G -valued random variables. Then*

$$\begin{aligned} & d[Y_1 + Y_3; Y_2 + Y_4] + d[Y_1 | Y_1 + Y_3; Y_2 | Y_2 + Y_4] \\ & + \mathbb{I}[Y_1 + Y_2 : Y_2 + Y_4 | Y_1 + Y_2 + Y_3 + Y_4] = d[Y_1; Y_2] + d[Y_3; Y_4]. \end{aligned}$$

Proof. We apply Proposition 5.1 with $H := G \times G$, $H' := G$, π the addition homomorphism $\pi(x, y) := x + y$, and with the random variables $Z_1 := (Y_1, Y_3)$ and $Z_2 := (Y_2, Y_4)$. Then by independence (Corollary 2.24)

$$d[Z_1; Z_2] = d[Y_1; Y_2] + d[Y_3; Y_4]$$

while by definition

$$d[\pi(Z_1); \pi(Z_2)] = d[Y_1 + Y_3; Y_2 + Y_4].$$

Furthermore,

$$d[Z_1 | \pi(Z_1); Z_2 | \pi(Z_2)] = d[Y_1 | Y_1 + Y_3; Y_2 | Y_2 + Y_4],$$

since $Z_1 = (Y_1, Y_3)$ and Y_1 are linked by an invertible affine transformation once $\pi(Z_1) = Y_1 + Y_3$ is fixed, and similarly for Z_2 and Y_2 . (This has to do with Lemma 2.12) Finally, we have

$$\begin{aligned} & \mathbb{I}[Z_1 + Z_2 : (\pi(Z_1), \pi(Z_2)) \mid \pi(Z_1) + \pi(Z_2)] \\ & = \mathbb{I}[(Y_1 + Y_2, Y_3 + Y_4) : (Y_1 + Y_3, Y_2 + Y_4) \mid Y_1 + Y_2 + Y_3 + Y_4] \\ & = \mathbb{I}[Y_1 + Y_2 : Y_2 + Y_4 \mid Y_1 + Y_2 + Y_3 + Y_4] \end{aligned}$$

where in the last line we used the fact that $(Y_1 + Y_2, Y_1 + Y_2 + Y_3 + Y_4)$ uniquely determine $Y_3 + Y_4$ and similarly $(Y_2 + Y_4, Y_1 + Y_2 + Y_3 + Y_4)$ uniquely determine $Y_1 + Y_3$. (This requires another helper lemma about entropy.) \square

Chapter 6

Entropy version of PFR

Definition 6.1. $\eta := 1/9$.

Throughout this chapter, $G = \mathbb{F}_2^n$, and X_1^0, X_2^0 are G -valued random variables.

Definition 6.2 (τ functional). *If X_1, X_2 are two G -valued random variables, then*

$$\tau[X_1; X_2] := d[X_1; X_2] + \eta d[X_1^0; X_1] + \eta d[X_2^0; X_2].$$

Lemma 6.3 (τ depends only on distribution). *If X'_1, X'_2 are copies of X_1, X_2 , then $\tau[X'_1; X'_2] = \tau[X_1; X_2]$.*

Proof. Immediate from Lemma 3.6. \square

Definition 6.4 (τ -minimizer). *A pair of G -valued random variables X_1, X_2 are said to be a τ -minimizer if one has*

$$\tau[X_1; X_2] \leq \tau[X'_1; X'_2]$$

for all G -valued random variables X'_1, X'_2 .

Proposition 6.5 (τ has minimum). *A pair X_1, X_2 of τ -minimizers exist.*

Proof. By Lemma 6.3, τ only depends on the probability distributions of X_1, X_2 . This ranges over a compact space, and τ is continuous. So τ has a minimum. \square

6.1 Basic facts about minimizers

In this section we assume that X_1, X_2 are τ -minimizers. We also write $k := d[X_1; X_2]$.

Lemma 6.6 (Distance lower bound). *For any G -valued random variables X'_1, X'_2 , one has*

$$d[X'_1; X'_2] \geq k - \eta(d[X_1^0; X'_1] - d[X_1^0; X_1]) - \eta(d[X_2^0; X'_2] - d[X_2^0; X_2]).$$

Proof. Immediate from Definition 6.2 and Proposition 6.5. \square

Lemma 6.7 (Conditional distance lower bound). *For any G -valued random variables X'_1, X'_2 and random variables Z, W , one has*

$$d[X'_1|Z; X'_2|W] \geq k - \eta(d[X_1^0; X'_1|Z] - d[X_1^0; X_1]) - \eta(d[X_2^0; X'_2|W] - d[X_2^0; X_2]).$$

Proof. Apply Lemma 6.6 to conditioned random variables and then average. \square

6.2 First estimate

We continue the assumptions from the preceding section.

Let $X_1, X_2, \tilde{X}_1, \tilde{X}_2$ be independent random variables, with X_1, \tilde{X}_1 copies of X_1 and X_2, \tilde{X}_2 copies of X_2 . (This is possible thanks to Lemma 3.7.)

We also define the quantity

$$I_1 := I[X_1 + X_2 : \tilde{X}_1 + X_2 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2].$$

Lemma 6.8 (Fibring identity for first estimate). *We have*

$$\begin{aligned} d[X_1 + \tilde{X}_2; X_2 + \tilde{X}_1] + d[X_1 | X_1 + \tilde{X}_2; X_2 | X_2 + \tilde{X}_1] \\ + \mathbb{I}[X_1 + X_2 : \tilde{X}_1 + X_2 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2] = 2k. \end{aligned}$$

Proof. Immediate from Corollary 5.3. \square

Lemma 6.9 (Lower bound on distances). *We have*

$$\begin{aligned} d[X_1 + \tilde{X}_2; X_2 + \tilde{X}_1] &\geq k - \eta(d[X_1^0; X_1 + \tilde{X}_2] - d[X_1^0; X_1]) \\ &\quad - \eta(d[X_2^0; X_2 + \tilde{X}_1] - d[X_2^0; X_2]) \end{aligned}$$

Proof. Immediate from Lemma 6.6. \square

Lemma 6.10 (Lower bound on conditional distances). *We have*

$$\begin{aligned} d[X_1 | X_1 + \tilde{X}_2; X_2 | X_2 + \tilde{X}_1] \\ \geq k - \eta(d[X_1^0; X_1 | X_1 + \tilde{X}_2] - d[X_1^0; X_1]) \\ - \eta(d[X_2^0; X_2 | X_2 + \tilde{X}_1] - d[X_2^0; X_2]). \end{aligned}$$

Proof. Immediate from Lemma 6.7. \square

Lemma 6.11 (Upper bound on distance differences). *We have*

$$\begin{aligned} d[X_1^0; X_1 + \tilde{X}_2] - d[X_1^0; X_1] &\leq \frac{1}{2}k + \frac{1}{4}\mathbb{H}[X_2] - \frac{1}{4}\mathbb{H}[X_1] \\ d[X_2^0; X_2 + \tilde{X}_1] - d[X_2^0; X_2] &\leq \frac{1}{2}k + \frac{1}{4}\mathbb{H}[X_1] - \frac{1}{4}\mathbb{H}[X_2], \\ d[X_1^0; X_1 | X_1 + \tilde{X}_2] - d[X_1^0; X_1] &\leq \frac{1}{2}k + \frac{1}{4}\mathbb{H}[X_1] - \frac{1}{4}\mathbb{H}[X_2] \\ d[X_2^0; X_2 | X_2 + \tilde{X}_1] - d[X_2^0; X_2] &\leq \frac{1}{2}k + \frac{1}{4}\mathbb{H}[X_2] - \frac{1}{4}\mathbb{H}[X_1]. \end{aligned}$$

Proof. Immediate from Lemma 3.25 (and recalling that k is defined to be $d[X_1; X_2]$). \square

Lemma 6.12 (First estimate). *We have $I_1 \leq 2\eta k$.*

Proof. Take a suitable linear combination of Lemma 6.8, Lemma 6.9, Lemma 6.10, and Lemma 6.11. \square

One can also extract the following useful inequality from the proof of the above lemma.

Lemma 6.13 (Entropy bound on quadruple sum). *With the same notation, we have*

$$\mathbb{H}[X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2] \leq \frac{1}{2}\mathbb{H}[X_1] + \frac{1}{2}\mathbb{H}[X_2] + (2 + \eta)k - I_1. \quad (6.1)$$

Proof. Subtracting Lemma 6.10 from Lemma 6.8, and combining the resulting inequality with Lemma 6.11 gives the bound

$$d[X_1 + \tilde{X}_2; X_2 + \tilde{X}_1] \leq (1 + \eta)k - I_1,$$

and the claim follows from Lemma 3.11 and the definition of k . \square

6.3 Second estimate

We continue the assumptions from the preceding section. We introduce the quantity

$$I_2 := \mathbb{I}[X_1 + X_2 : X_1 + \tilde{X}_1 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2].$$

Lemma 6.14 (Distance between sums). *We have*

$$d[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2] \geq k - \frac{\eta}{2}(d[X_1; X_1] + d[X_2; X_2]).$$

Proof. From Lemma 6.6 one has

$$\begin{aligned} d[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2] &\geq k - \eta(d[X_1^0; X_1] - d[X_1^0; X_1 + \tilde{X}_1]) \\ &\quad - \eta(d[X_2^0; X_2] - d[X_2^0; X_2 + \tilde{X}_2]). \end{aligned}$$

Now Lemma 3.25 gives

$$d[X_1^0; X_1 + \tilde{X}_1] - d[X_1^0; X_1] \leq \frac{1}{2}d[X_1; X_1]$$

and

$$d[X_2^0; X_2 + \tilde{X}_2] - d[X_2^0; X_2] \leq \frac{1}{2}d[X_2; X_2],$$

and the claim follows. \square

Lemma 6.15. *We have*

$$d[X_1; X_1] + d[X_2; X_2] \leq 2k + \frac{2(2\eta k - I_1)}{1 - \eta}.$$

Proof. We may use Lemma 3.11 to expand

$$\begin{aligned} &d[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2] \\ &= \mathbb{H}[X_1 + \tilde{X}_1 + X_2 + \tilde{X}_2] - \frac{1}{2}\mathbb{H}[X_1 + \tilde{X}_1] - \frac{1}{2}\mathbb{H}[X_2 + \tilde{X}_2] \\ &= \mathbb{H}[X_1 + \tilde{X}_1 + X_2 + \tilde{X}_2] - \frac{1}{2}\mathbb{H}[X_1] - \frac{1}{2}\mathbb{H}[X_2] \\ &\quad - \frac{1}{2}(d[X_1; X_1] + d[X_2; X_2]), \end{aligned}$$

and hence by Lemma 6.13

$$d[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2] \leq (2 + \eta)k - \frac{1}{2}(d[X_1; X_1] + d[X_2; X_2]) - I_1.$$

Combining this bound with Lemma 6.14 we obtain the result. \square

Lemma 6.16 (Second estimate). *We have*

$$I_2 \leq 2\eta k + \frac{2\eta(2\eta k - I_1)}{1 - \eta}.$$

Proof. We apply Corollary 5.3, but now with the choice

$$(Y_1, Y_2, Y_3, Y_4) := (X_2, X_1, \tilde{X}_2, \tilde{X}_1).$$

Now Corollary 5.3 can be rewritten as

$$\begin{aligned} & d[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2] + d[X_1 | X_1 + \tilde{X}_1; X_2 | X_2 + \tilde{X}_2] \\ & + \mathbb{I}[X_1 + X_2 : X_1 + \tilde{X}_1 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2] = 2k, \end{aligned}$$

recalling once again that $k := d[X_1; X_2]$. From Lemma 6.7 one has

$$\begin{aligned} d[X_1 | X_1 + \tilde{X}_1; X_2 | X_2 + \tilde{X}_2] & \geq k - \eta(d[X_1^0; X_1] - d[X_1^0; X_1 | X_1 + \tilde{X}_1]) \\ & - \eta(d[X_2^0; X_2] - d[X_2^0; X_2 | X_2 + \tilde{X}_2]). \end{aligned}$$

while from Lemma 3.25 we have

$$d[X_1^0; X_1 | X_1 + \tilde{X}_1] - d[X_1^0; X_1] \leq \frac{1}{2}d[X_1; X_1],$$

and

$$d[X_2^0; X_2 | X_2 + \tilde{X}_2] - d[X_2^0; X_2] \leq \frac{1}{2}d[X_1; X_2].$$

Combining all these inequalities with Lemma 6.14, we have

$$\mathbb{I}[X_1 + X_2 : X_1 + \tilde{X}_1 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2] \leq \eta(d[X_1; X_1] + d[X_2; X_2]). \quad (6.2)$$

Together with Lemma 6.15, this gives the conclusion. \square

6.4 Endgame

Let $X_1, X_2, \tilde{X}_1, \tilde{X}_2$ be as before, and introduce the random variables

$$U := X_1 + X_2, \quad V := \tilde{X}_1 + X_2, \quad W := X_1 + \tilde{X}_1$$

and

$$S := X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2.$$

Lemma 6.17 (Symmetry identity). *We have*

$$I(U : W | S) = I(V : W | S).$$

Proof. This should follow from Lemma 3.6, Lemma 2.26, and Lemma 2.13. \square

Lemma 6.18 (Bound on conditional mutual informations). *We have*

$$I(U : V | S) + I(V : W | S) + I(W : U | S) \leq 6\eta k - \frac{1 - 5\eta}{1 - \eta}(2\eta k - I_1).$$

Proof. From the definitions of I_1, I_2 and Lemma 6.17, we see that

$$I_1 = I(U : V | S), \quad I_2 = I(W : U | S), \quad I_3 = I(V : W | S).$$

Applying Lemma 6.12 and Lemma 6.16 we have the inequalities

$$I_2 \leq 2\eta k + \frac{2\eta(2\eta k - I_1)}{1 - \eta}.$$

We conclude that

$$I_1 + I_2 + I_3 \leq I_1 + 4\eta k + \frac{4\eta(2\eta k - I_1)}{1 - \eta}$$

and the claim follows from some calculation. \square

Lemma 6.19 (Bound on distance increments). *We have*

$$\begin{aligned} \sum_{i=1}^2 \sum_{A \in \{U, V, W\}} (d[X_i^0; A|S] - d[X_i^0; X_i]) \\ \leq (6 - 3\eta)k + 3(2\eta k - I_1). \end{aligned}$$

Proof. By Lemma 3.26 (taking $X = X_1^0$, $Y = X_1$, $Z = X_2$ and $Z' = \tilde{X}_1 + \tilde{X}_2$, so that $Y + Z = U$ and $Y + Z + Z' = S$) we have, noting that $\mathbb{H}[Y + Z] = \mathbb{H}[Z']$,

$$d[X_1^0; U|S] - d[X_1^0; X_1] \leq \frac{1}{2}(\mathbb{H}[S] - \mathbb{H}[X_1]).$$

Further applications of Lemma 3.26 give

$$\begin{aligned} d[X_2^0; U|S] - d[X_2^0; X_2] &\leq \frac{1}{2}(\mathbb{H}[S] - \mathbb{H}[X_2]) \\ d[X_1^0; V|S] - d[X_1^0; X_1] &\leq \frac{1}{2}(\mathbb{H}[S] - \mathbb{H}[X_1]) \\ d[X_2^0; V|S] - d[X_2^0; X_2] &\leq \frac{1}{2}(\mathbb{H}[S] - \mathbb{H}[X_2]) \end{aligned}$$

and

$$d[X_1^0; W|S] - d[X_1^0; X_1] \leq \frac{1}{2}(\mathbb{H}[S] + \mathbb{H}[W] - \mathbb{H}[X_1] - \mathbb{H}[W']),$$

where $W' := X_2 + \tilde{X}_2$. To treat $d[X_2^0; W|S]$, first note that this equals $d[X_2^0; W'|S]$, since for a fixed choice s of S we have $W' = W + s$ (here we need some helper lemma about Ruzsa distance). Now we may apply Lemma 3.26 to obtain

$$d[X_2^0; W'|S] - d[X_2^0; X_2] \leq \frac{1}{2}(\mathbb{H}[S] + \mathbb{H}[W'] - \mathbb{H}[X_2] - \mathbb{H}[W]).$$

Summing these six estimates and using Lemma 6.13, we conclude that

$$\begin{aligned} \sum_{i=1}^2 \sum_{A \in \{U, V, W\}} (d[X_i^0; A|S] - d[X_i^0; X_i]) \\ \leq 3\mathbb{H}[S] - \frac{3}{2}\mathbb{H}[X_1] - \frac{3}{2}\mathbb{H}[X_2] \\ \leq (6 - 3\eta)k + 3(2\eta k - I_1) \end{aligned}$$

as required. \square

Lemma 6.20 (Key identity). *We have $U + V + W = 0$.*

Proof. Obvious because we are in characteristic two. \square

For the next two lemmas, let (T_1, T_2, T_3) be a G^3 -valued random variable such that $T_1 + T_2 + T_3 = 0$ holds identically. Set

$$\delta := \sum_{1 \leq i < j \leq 3} \mathbb{I}[T_i; T_j]. \quad (6.3)$$

Lemma 6.21 (Constructing good variables, I). *One has*

$$\begin{aligned} k \leq \delta + \eta(d[X_1^0; T_1] - d[X_1^0; X_1]) + \eta(d[X_2^0; T_2] - d[X_2^0; X_2]) \\ + \frac{1}{2}\eta\mathbb{I}[T_1 : T_3] + \frac{1}{2}\eta\mathbb{I}[T_2 : T_3]. \end{aligned}$$

(Note: in the paper, this lemma was phrased in a more intuitive formulation that is basically the contrapositive of the one here. Similarly for the next two lemmas.)

Proof. We apply Lemma 3.23 with $(A, B) = (T_1, T_2)$ there. Since $T_1 + T_2 = T_3$, the conclusion is that

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] d[(T_1|T_3 = t_3); (T_2|T_3 = t_3)] \\ \leq 3\mathbb{I}[T_1 : T_2] + 2\mathbb{H}[T_3] - \mathbb{H}[T_1] - \mathbb{H}[T_2]. \end{aligned} \quad (6.4)$$

The right-hand side in (6.4) can be rearranged as

$$\begin{aligned} 2(\mathbb{H}[T_1] + \mathbb{H}[T_2] + \mathbb{H}[T_3]) - 3\mathbb{H}[T_1, T_2] \\ = 2(\mathbb{H}[T_1] + \mathbb{H}[T_2] + \mathbb{H}[T_3]) - \mathbb{H}[T_1, T_2] - \mathbb{H}[T_2, T_3] - \mathbb{H}[T_1, T_3] = \delta, \end{aligned}$$

using the fact (from Lemma 2.2) that all three terms $\mathbb{H}[T_i, T_j]$ are equal to $\mathbb{H}[T_1, T_2, T_3]$ and hence to each other. We also have

$$\begin{aligned} \sum_{t_3} P[T_3 = t_3] (d[X_1^0; (T_1|T_3 = t_3)] - d[X_1^0; X_1]) \\ = d[X_1^0; T_1|T_3] - d[X_1^0; X_1] \leq d[X_1^0; T_1] - d[X_1^0; X_1] + \frac{1}{2}\mathbb{I}[T_1 : T_3] \end{aligned}$$

by Lemma 3.24, and similarly

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] (d[X_2^0; (T_2|T_3 = t_3)] - d[X_2^0; X_2]) \\ \leq d[X_2^0; T_2] - d[X_2^0; X_2] + \frac{1}{2}\mathbb{I}[T_2 : T_3]. \end{aligned}$$

Putting the above observations together, we have

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] \psi[(T_1|T_3 = t_3); (T_2|T_3 = t_3)] \leq \delta + \eta(d[X_1^0; T_1] - d[X_1^0; X_1]) \\ + \eta(d[X_2^0; T_2] - d[X_2^0; X_2]) + \frac{1}{2}\eta\mathbb{I}[T_1 : T_3] + \frac{1}{2}\eta\mathbb{I}[T_2 : T_3] \end{aligned}$$

where we introduce the notation

$$\psi[Y_1; Y_2] := d[Y_1; Y_2] + \eta(d[X_1^0; Y_1] - d[X_1^0; X_1]) + \eta(d[X_2^0; Y_2] - d[X_2^0; X_2]).$$

On the other hand, from Lemma 6.6 we have $k \leq \psi[Y_1; Y_2]$, and the claim follows. \square

Lemma 6.22 (Constructing good variables, II). *One has*

$$k \leq \delta + \frac{\eta}{3} \left(\delta + \sum_{i=1}^2 \sum_{j=1}^3 (d[X_i^0; T_j] - d[X_i^0; X_i]) \right).$$

Proof. Average Lemma 6.21 over all six permutations of T_1, T_2, T_3 . \square

Theorem 6.23 (τ -decrement). *Let X_1, X_2 be tau-minimizers. Then $d[X_1; X_2] = 0$.*

Proof. Set $k := d[X_1; X_2]$. Applying Lemma 6.22 with any random variables (T_1, T_2, T_3) such that $T_1 + T_2 + T_3 = 0$ holds identically, we deduce that

$$k \leq \delta + \frac{\eta}{3} \left(\delta + \sum_{i=1}^2 \sum_{j=1}^3 (d[X_1^0; T_j] - d[X_i^0; X_i]) \right).$$

Note that δ is still defined by (6.3) and thus depends on T_1, T_2, T_3 . In particular we may apply this for

$$T_1 = (U|S=s), \quad T_2 = (V|S=s), \quad T_3 = (W|S=s)$$

for s in the range of S (which is a valid choice by Lemma 6.20) and then average over s with weights $p_S(s)$, to obtain

$$k \leq \tilde{\delta} + \frac{\eta}{3} \left(\tilde{\delta} + \sum_{i=1}^2 \sum_{A \in \{U, V, W\}} (d[X_i^0; A|S] - d[X_i^0; X_i]) \right),$$

where

$$\tilde{\delta} := \mathbb{I}[U : V|S] + \mathbb{I}[V : W|S] + \mathbb{I}[W : U|S].$$

Putting this together with Lemma 6.18 and Lemma 6.19, we conclude that

$$\begin{aligned} k &\leq \left(1 + \frac{\eta}{3}\right) \left(6\eta k - \frac{1-5\eta}{1-\eta} (2\eta k - I_1)\right) + \frac{\eta}{3} \left((6-3\eta)k + 3(2\eta k - I_1)\right) \\ &= (8\eta + \eta^2)k - \left(\frac{1-5\eta}{1-\eta} \left(1 + \frac{\eta}{3}\right) - \eta\right) (2\eta k - I_1) \\ &\leq (8\eta + \eta^2)k \end{aligned}$$

since the quantity $2\eta k - I_1$ is non-negative (by Lemma 6.12), and its coefficient in the above expression is non-positive provided that $\eta(2\eta + 17) \leq 3$, which is certainly the case with Definition 6.1. Moreover, from Definition 6.1 we have $8\eta + \eta^2 < 1$. It follows that $k = 0$, as desired. \square

6.5 Conclusion

Theorem 6.24 (Entropy version of PFR). *Let $G = \mathbb{F}_2^n$, and suppose that X_1^0, X_2^0 are G -valued random variables. Then there is some subgroup $H \leq G$ such that*

$$d[X_1^0; U_H] + d[X_2^0; U_H] \leq 11d[X_1^0; X_2^0],$$

where U_H is uniformly distributed on H . Furthermore, both $d[X_1^0; U_H]$ and $d[X_2^0; U_H]$ are at most $6d[X_1^0; X_2^0]$.

Proof. Let X_1, X_2 be the τ -minimizer from Proposition 6.5. From Theorem 6.23, $d[X_1; X_2] = 0$. From Corollary 4.6, $d[X_1; U_H] = d[X_2; U_H] = 0$. Also from τ -minimization we have $\tau[X_1; X_2] \leq \tau[X_2^0; X_1^0]$. Using this and the Ruzsa triangle inequality we can conclude. \square

Note: a ‘stretch goal’ for this project would be to obtain a ‘decidable’ analogue of this result (see the remark at the end of Section 2 for some related discussion).

Chapter 7

Proof of PFR

Lemma 7.1 (Ruzsa covering lemma). *If A, B are finite non-empty subsets of a group G , then A can be covered by at most $|A + B|/|B|$ translates of $B - B$.*

Proof. Cover A greedily by disjoint translates of B . \square

Lemma 7.2. *If $A \subset \mathbf{F}_2^n$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by at most $K^{13/2}|A|^{1/2}/|H|^{1/2}$ translates of a subspace H of \mathbf{F}_2^n with*

$$|H|/|A| \in [K^{-11}, K^{11}]. \quad (7.1)$$

Proof. Let U_A be the uniform distribution on A (which exists by Lemma 2.5), thus $\mathbb{H}[U_A] = \log |A|$ by Lemma 2.7. By Lemma 2.3 and the fact that $U_A + U_A$ is supported on $A + A$, $\mathbb{H}[U_A + U_A] \leq \log |A + A|$. By Definition 3.8, the doubling condition $|A + A| \leq K|A|$ therefore gives

$$d[U_A; U_A] \leq \log K.$$

By Theorem 6.24, we may thus find a subspace H of \mathbf{F}_2^n such that

$$d[U_A; U_H] \leq \frac{1}{2}C' \log K \quad (7.2)$$

with $C' = 11$. By Lemma 3.13 we conclude that

$$|\log |H| - \log |A|| \leq C' \log K,$$

proving (7.1). From Definition 3.8, (7.2) is equivalent to

$$\mathbb{H}[U_A - U_H] \leq \log(|A|^{1/2}|H|^{1/2}) + \frac{1}{2}C' \log K.$$

By Lemma 2.8 we conclude the existence of a point $x_0 \in \mathbf{F}_p^n$ such that

$$p_{U_A - U_H}(x_0) \geq |A|^{-1/2}|H|^{-1/2}K^{-C'/2},$$

or equivalently

$$|A \cap (H + x_0)| \geq K^{-C'/2}|A|^{1/2}|H|^{1/2}.$$

Applying Lemma 7.1, we may thus cover A by at most

$$\frac{|A + (A \cap (H + x_0))|}{|A \cap (H + x_0)|} \leq \frac{K|A|}{K^{-C'/2}|A|^{1/2}|H|^{1/2}} = K^{C'/2+1} \frac{|A|^{1/2}}{|H|^{1/2}}$$

translates of

$$(A \cap (H + x_0)) - (A \cap (H + x_0)) \subseteq H.$$

This proves the claim. \square

Theorem 7.3 (PFR). *If $A \subset \mathbf{F}_2^n$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by most $2K^{12}$ translates of a subspace H of \mathbf{F}_2^n with $|H| \leq |A|$.*

Proof. Let H be given by Lemma 7.2. If $|H| \leq |A|$ then we are already done thanks to (7.1). If $|H| > |A|$ then we can cover H by at most $2|H|/|A|$ translates of a subspace H' of H with $|H'| \leq |A|$. We can thus cover A by at most

$$2K^{13/2} \frac{|H|^{1/2}}{|A|^{1/2}}$$

translates of H' , and the claim again follows from (7.1). \square

Corollary 7.4 (PFR in infinite groups). *If G is an abelian 2-torsion group, $A \subset G$ is non-empty finite, and $|A + A| \leq K|A|$, then A can be covered by most $2K^{12}$ translates of a finite group H of G with $|H| \leq |A|$.*

Proof. Apply Theorem 7.3 to the group generated by A , which is isomorphic to \mathbf{F}_2^n for some n . \square

Chapter 8

Improving the exponents

The arguments here are due to Jyun-Jie Liao.

Definition 8.1 (New definition of η). η is a real parameter with $\eta > 0$.

Previously in Definition 6.1 we had set $\eta = 1/9$. To implement this chapter, one should refactor the previous arguments so that η is now free to be a positive number, though the specific hypothesis $\eta = 1/9$ would now need to be added to Theorem 6.23.

Let X_1^0, X_2^0 be G -valued random variables, and let X_1, X_2 be τ -minimizers as defined in Definition 6.4.

For the next two lemmas, let (T_1, T_2, T_3) be a G^3 -valued random variable such that $T_1 + T_2 + T_3 = 0$ holds identically. Let δ be the quantity in (6.3).

We have the following variant of Lemma 6.21:

Lemma 8.2 (Constructing good variables, I'). One has

$$k \leq \delta + \eta(d[X_1^0; T_1|T_3] - d[X_1^0; X_1]) + \eta(d[X_2^0; T_2|T_3] - d[X_2^0; X_2]).$$

Proof. We apply Lemma 3.23 with $(A, B) = (T_1, T_2)$ there. Since $T_1 + T_2 = T_3$, the conclusion is that

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] d[(T_1|T_3 = t_3); (T_2|T_3 = t_3)] \\ \leq 3\mathbb{H}[T_1 : T_2] + 2\mathbb{H}[T_3] - \mathbb{H}[T_1] - \mathbb{H}[T_2]. \end{aligned} \tag{8.1}$$

The right-hand side in (8.1) can be rearranged as

$$\begin{aligned} 2(\mathbb{H}[T_1] + \mathbb{H}[T_2] + \mathbb{H}[T_3]) - 3\mathbb{H}[T_1, T_2] \\ = 2(\mathbb{H}[T_1] + \mathbb{H}[T_2] + \mathbb{H}[T_3]) - \mathbb{H}[T_1, T_2] - \mathbb{H}[T_2, T_3] - \mathbb{H}[T_1, T_3] = \delta, \end{aligned}$$

using the fact (from Lemma 2.2) that all three terms $\mathbb{H}[T_i, T_j]$ are equal to $\mathbb{H}[T_1, T_2, T_3]$ and hence to each other. We also have

$$\begin{aligned} \sum_{t_3} P[T_3 = t_3] (d[X_1^0; (T_1|T_3 = t_3)] - d[X_1^0; X_1]) \\ = d[X_1^0; T_1|T_3] - d[X_1^0; X_1] \end{aligned}$$

and similarly

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] (d[X_2^0; (T_2|T_3 = t_3)] - d[X_2^0; X_2]) \\ \leq d[X_2^0; T_2|T_3] - d[X_2^0; X_2]. \end{aligned}$$

Putting the above observations together, we have

$$\begin{aligned} \sum_{t_3} \mathbb{P}[T_3 = t_3] \psi[(T_1|T_3 = t_3); (T_2|T_3 = t_3)] \leq \delta + \eta(d[X_1^0; T_1|T_3] - d[X_1^0; X_1]) \\ + \eta(d[X_2^0; T_2|T_3] - d[X_2^0; X_2]) \end{aligned}$$

where we introduce the notation

$$\psi[Y_1; Y_2] := d[Y_1; Y_2] + \eta(d[X_1^0; Y_1] - d[X_1^0; X_1]) + \eta(d[X_2^0; Y_2] - d[X_2^0; X_2]).$$

On the other hand, from Lemma 6.6 we have $k \leq \psi[Y_1; Y_2]$, and the claim follows. \square

(One could in fact refactor Lemma 6.21 to follow from Lemma 8.2 and Lemma 3.24).

Lemma 8.3 (Constructing good variables, II'). *One has*

$$k \leq \delta + \frac{\eta}{6} \sum_{i=1}^2 \sum_{1 \leq j, l \leq 3; j \neq l} (d[X_i^0; T_j|T_l] - d[X_i^0; X_i])$$

Proof. Average Lemma 8.2 over all six permutations of T_1, T_2, T_3 . \square

Now let $X_1, X_2, \tilde{X}_1, \tilde{X}_2$ be independent copies of X_1, X_2, X_1, X_2 , and set

$$U := X_1 + X_2, \quad V := \tilde{X}_1 + X_2, \quad W := X_1 + \tilde{X}_1$$

and

$$S := X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2$$

and introduce the quantities

$$k = d[X_1; X_2]$$

and

$$I_1 = I(U : V | S).$$

Lemma 8.4 (Constructing good variables, III'). *One has*

$$k \leq I(U : V | S) + I(V : W | S) + I(W : U | S) + \frac{\eta}{6} \sum_{i=1}^2 \sum_{A, B \in \{U, V, W\}: A \neq B} (d[X_i^0; A|B, S] - d[X_i^0; X_i]).$$

Proof. For each s in the range of S , apply Lemma 8.3 with T_1, T_2, T_3 equal to $(U|S = s)$, $(V|S = s)$, $(W|S = s)$ respectively (which works thanks to Lemma 6.20), multiply by $\mathbb{P}[S = s]$, and sum in s to conclude. \square

To control the expressions in the right-hand side of this lemma we need a general entropy inequality.

Lemma 8.5 (General inequality). *Let X_1, X_2, X_3, X_4 be independent G -valued random variables, and let Y be another G -valued random variable. Set $S := X_1 + X_2 + X_3 + X_4$. Then*

$$\begin{aligned} & d[Y; X_1 + X_2 | X_1 + X_3, S] - d[Y; X_1] \\ & \leq \frac{1}{4}(d[X_1; X_2] + 2d[X_1; X_3] + d[X_2; X_4]) \\ & \quad + \frac{1}{4}(d[X_1 | X_1 + X_3; X_2 | X_2 + X_4] - d[X_3 | X_3 + X_4; X_1 | X_1 + X_2]) \\ & \quad + \frac{1}{8}(\mathbb{H}[X_1 + X_2] - \mathbb{H}[X_3 + X_4] + \mathbb{H}[X_2] - \mathbb{H}[X_3] \\ & \quad \quad + \mathbb{H}[X_2 | X_2 + X_4] - \mathbb{H}[X_1 | X_1 + X_3]). \end{aligned}$$

Proof. On the one hand, by Lemma 3.24 and two applications of Lemma 3.25 we have

$$\begin{aligned} & d[Y; X_1 + X_2 | X_1 + X_3, S] \\ & \leq d[Y; X_1 + X_2 | S] + \frac{1}{2}\mathbb{I}[X_1 + X_2 : X_1 + X_3 | S] \\ & \leq d[Y; X_1 + X_2] \\ & \quad + \frac{1}{2}(d[X_1 + X_2; X_3 + X_4] + \mathbb{I}[X_1 + X_2 : X_1 + X_3 | S]) \\ & \quad + \frac{1}{4}(\mathbb{H}[X_1 + X_2] - \mathbb{H}[X_3 + X_4]) \\ & \leq d[Y; X_1] \\ & \quad + \frac{1}{2}(d[X_1; X_2] + d[X_1 + X_2; X_3 + X_4] + \mathbb{I}[X_1 + X_2 : X_1 + X_3 | S]) \\ & \quad + \frac{1}{4}(\mathbb{H}[X_1 + X_2] - \mathbb{H}[X_3 + X_4] + \mathbb{H}[X_2] - \mathbb{H}[X_1]). \end{aligned}$$

From Corollary 5.3 (with Y_1, Y_2, Y_3, Y_4 set equal to X_3, X_1, X_4, X_2 respectively) one has

$$\begin{aligned} & d[X_3 + X_4; X_1 + X_2] + d[X_3 | X_3 + X_4; X_1 | X_1 + X_2] \\ & \quad + \mathbb{I}[X_3 + X_4 : X_1 + X_2 | S] = d[X_3; X_1] + d[X_4; X_2]. \end{aligned}$$

Rearranging the mutual information and Ruzsa distances slightly, we conclude that

$$\begin{aligned} & d[Y; X_1 + X_2 | X_1 + X_3, S] \\ & \leq d[Y; X_1] \\ & \quad + \frac{1}{2}(d[X_1; X_2] + d[X_1; X_3] + d[X_2; X_4] - d[X_3 | X_3 + X_4; X_1 | X_1 + X_2]) \\ & \quad + \frac{1}{4}(\mathbb{H}[X_1 + X_2] - \mathbb{H}[X_3 + X_4] + \mathbb{H}[X_2] - \mathbb{H}[X_1]). \end{aligned}$$

On the other hand, $(X_1 + X_2 | X_1 + X_3, S)$ has an identical distribution to the independent sum of $(X_1 | X_1 + X_3)$ and $(X_2 | X_2 + X_4)$. We may therefore apply Lemma 3.25 to conditioned variables $(X_1 | X_1 + X_3 = s)$ and $(X_2 | X_2 + X_4 = t)$ and average in s, t to obtain the alternative bound

$$\begin{aligned} & d[Y; X_1 + X_2 | X_1 + X_3, S] \\ & \leq d[Y; X_1 | X_1 + X_3] + \frac{1}{2}d[X_1 | X_1 + X_3; X_2 | X_2 + X_4] \\ & \quad + \frac{1}{4}(\mathbb{H}[X_2 | X_2 + X_4] - \mathbb{H}[X_1 | X_1 + X_3]) \\ & \leq d[Y; X_1] \\ & \quad + \frac{1}{2}(d[X_1; X_3] + d[X_1 | X_1 + X_3; X_2 | X_2 + X_4]) \\ & \quad + \frac{1}{4}(\mathbb{H}[X_2 | X_2 + X_4] - \mathbb{H}[X_1 | X_1 + X_3] + \mathbb{H}[X_1] - \mathbb{H}[X_3]). \end{aligned}$$

If one takes the arithmetic mean of these two bounds and simplifies using Corollary 5.3, one obtains the claim. \square

Returning to our specific situation, we now have

Lemma 8.6 (Bound on distance differences). *We have*

$$\begin{aligned} & \sum_{i=1}^2 \sum_{A,B \in \{U,V,W\}: A \neq B} d[X_i^0; A|B, S] - d[X_i^0; X_i] \\ & \leq 12k + \frac{4(2\eta k - I_1)}{1 - \eta}. \end{aligned}$$

Proof. If we apply Lemma 8.5 with $X_1 := X_1$, $Y := X_1^0$ and (X_2, X_3, X_4) equal to the $3!$ permutations of $(X_2, \tilde{X}_1, \tilde{X}_2)$, and sums (using the symmetry $\mathbb{H}[X|X+Y] = \mathbb{H}[Y|X+Y]$, which follows from Lemma 2.12), we can bound

$$\sum_{A,B \in \{U,V,W\}: A \neq B} d[X_1^0; A|B, S] - d[X_1^0; X_1]$$

by

$$\begin{aligned} & \frac{1}{4}(6d[X_1; X_2] + 6d[X_1; \tilde{X}_2] \\ & + 6d[X_1; \tilde{X}_1] + 2d[\tilde{X}_1; \tilde{X}_2] + 2d[\tilde{X}_1; X_2] + 2d[X_2; \tilde{X}_2]) \\ & + \frac{1}{8}(2\mathbb{H}[X_1 + X_2] + 2\mathbb{H}[X_1 + \tilde{X}_1] + 2\mathbb{H}[X_1 + \tilde{X}_2] \\ & - 2\mathbb{H}[\tilde{X}_1 + X_2] - 2\mathbb{H}[X_2 + \tilde{X}_2] - 2\mathbb{H}[\tilde{X}_1 + \tilde{X}_2]) \\ & + \frac{1}{4}(\mathbb{H}[X_2|X_2 + \tilde{X}_2] + \mathbb{H}[\tilde{X}_1|\tilde{X}_1 + \tilde{X}_2] + \mathbb{H}[\tilde{X}_1|X_1 + \tilde{X}_2] \\ & - \mathbb{H}[X_1|X_1 + \tilde{X}_1] - \mathbb{H}[X_1|X_1 + X_2] - \mathbb{H}[X_1|X_1 + \tilde{X}_2]), \end{aligned}$$

which simplifies to

$$\begin{aligned} & \frac{1}{4}(16k + 6d[X_1; X_1] + 2d[X_2; X_2]) \\ & + \frac{1}{4}(H[X_1 + \tilde{X}_1] - H[X_2 + \tilde{X}_2] + d[X_2|X_2 + \tilde{X}_2] - d[X_1|X_1 + \tilde{X}_1]). \end{aligned}$$

A symmetric argument also bounds

$$\sum_{A,B \in \{U,V,W\}: A \neq B} d[X_2^0; A|B, S] - d[X_2^0; X_2]$$

by

$$\begin{aligned} & \frac{1}{4}(16k + 6d[X_2; X_2] + 2d[X_1; X_1]) \\ & + \frac{1}{4}(H[X_2 + \tilde{X}_2] - H[X_1 + \tilde{X}_1] + d[X_1|X_1 + \tilde{X}_1] - d[X_2|X_2 + \tilde{X}_2]). \end{aligned}$$

On the other hand, from Lemma 6.15 one has

$$d[X_1; X_1] + d[X_2; X_2] \leq 2k + \frac{2(2\eta k - I_1)}{1 - \eta}.$$

Summing the previous three estimates, we obtain the claim. \square

Theorem 8.7 (Improved τ -decrement). *Suppose $0 < \eta < 1/8$. Let X_1, X_2 be tau-minimizers. Then $d[X_1; X_2] = 0$.*

Proof. From Lemma 8.4, Lemma 8.6, and Lemma 6.18 one has

$$k \leq 8\eta k - \frac{(1-5\eta - \frac{4}{6}\eta)(2\eta k - I_1)}{(1-\eta)}.$$

For any $\eta < 1/8$, we see from Lemma 6.12 that the expression $\frac{(1-5\eta - \frac{4}{6}\eta)(2\eta k - I_1)}{(1-\eta)}$ is nonnegative, and hence $k = 0$ as required. \square

Theorem 8.8 (Limiting improved τ -decrement). *For $\eta = 1/8$, there exist tau-minimizers X_1, X_2 satisfying $d[X_1; X_2] = 0$.*

Proof. For each $\eta < 1/8$, consider minimizers X_1^η and X_2^η from Proposition 6.5. By Theorem 8.7, they satisfy $d[X_1^\eta; X_2^\eta] = 0$. By compactness of the space of probability measures on G , one may extract a converging subsequence of the distributions of X_1^η and X_2^η as $\eta \rightarrow 1/8$. By continuity of all the involved quantities, the limit is a pair of tau-minimizers for $1/8$ satisfying additionally $d[X_1; X_2] = 0$. \square

Theorem 8.9 (Improved entropy version of PFR). *Let $G = \mathbb{F}_2^n$, and suppose that X_1^0, X_2^0 are G -valued random variables. Then there is some subgroup $H \leq G$ such that*

$$d[X_1^0; U_H] + d[X_2^0; U_H] \leq 10d[X_1^0; X_2^0],$$

where U_H is uniformly distributed on H . Furthermore, both $d[X_1^0; U_H]$ and $d[X_2^0; U_H]$ are at most $6d[X_1^0; X_2^0]$.

Proof. Let X_1, X_2 be the good τ -minimizer from Theorem 8.8. By construction, $d[X_1; X_2] = 0$. From Corollary 4.6, $d[X_1; U_H] = d[X_2; U_H] = 0$. Also from τ -minimization we have $\tau[X_1; X_2] \leq \tau[X_2^0; X_1^0]$. Using this and the Ruzsa triangle inequality we can conclude. \square

One can then replace Lemma 7.2 with

Lemma 8.10. *If $A \subset \mathbb{F}_2^n$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by at most $K^6|A|^{1/2}/|H|^{1/2}$ translates of a subspace H of \mathbb{F}_2^n with*

$$|H|/|A| \in [K^{-10}, K^{10}].$$

Proof. By repeating the proof of Lemma 7.2 and using Theorem 8.9 one can obtain the claim with $13/2$ replaced with 6 and 11 replaced by 10 . \square

This implies the following improved version of Theorem 7.3:

Theorem 8.11 (Improved PFR). *If $A \subset \mathbb{F}_2^n$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by most $2K^{11}$ translates of a subspace H of \mathbb{F}_2^n with $|H| \leq |A|$.*

Proof. By repeating the proof of Theorem 7.3 and using Lemma 8.10 one can obtain the claim with 11 replaced by 10 . \square

Of course, by replacing Theorem 7.3 with Theorem 8.11 we may also improve constants in downstream theorems in a straightforward manner.

Chapter 9

Homomorphism version of PFR

In this section, G, G' are finite abelian 2-groups.

Lemma 9.1 (Hahn-Banach type theorem). *Let H_0 be a subgroup of G . Then every homomorphism $\phi : H_0 \rightarrow G'$ can be extended to a homomorphism $\tilde{\phi} : G \rightarrow G'$.*

Proof. By induction it suffices to treat the case where H_0 has index 2 in G , but then the extension can be constructed by hand. \square

Lemma 9.2 (Goursat type theorem). *Let H be a subgroup of $G \times G'$. Then there exists a subgroup H_0 of G , a subgroup H_1 of G' , and a homomorphism $\phi : G \rightarrow G'$ such that*

$$H := \{(x, \phi(x) + y) : x \in H_0, y \in H_1\}.$$

In particular, $|H| = |H_0||H_1|$.

Proof. We can take H_0 to be the projection of H to G , and H_1 to be the slice $H_1 := \{y : (0, y) \in H\}$. One can construct ϕ on H_0 one generator at a time by the greedy algorithm, and then extend to G by Lemma 9.1. The cardinality bound is clear from direct counting. \square

Theorem 9.3 (Homomorphism form of PFR). *Let $f : G \rightarrow G'$ be a function, and let S denote the set*

$$S := \{f(x + y) - f(x) - f(y) : x, y \in G\}.$$

Then there exists a homomorphism $\phi : G \rightarrow G'$ such that

$$|\{f(x) - \phi(x) : x \in G\}| \leq |S|^{10}.$$

Proof. Consider the graph $A \subset G \times G'$ defined by

$$A := \{(x, f(x)) : x \in G\}.$$

Clearly, $|A| = |G|$. By hypothesis, we have

$$A + A \subset \{(x, f(x) + s) : x \in G, s \in S\}$$

and hence $|A + A| \leq |S||A|$. Applying Corollary 13.40, we may find a subspace $H \subset G \times G'$ such that $|H|/|A| \in [|S|^{-8}, |S|^8]$ and A is covered by $c + H$ with $|c| \leq |S|^5|A|^{1/2}/|H|^{1/2}$. If

we let H_0, H_1 be as in Lemma 9.2, this implies on taking projections that G is covered by at most $|c|$ translates of H_0 . This implies that

$$|c||H_0| \geq |G|;$$

since $|H_0||H_1| = |H|$, we conclude that

$$|H_1| \leq |c||H|/|G| = |c||H|/|A|.$$

By hypothesis, A is covered by at most $|c|$ translates of H , and hence by at most $|c||H_1|$ translates of $\{(x, \phi(x)) : x \in G\}$. As ϕ is a homomorphism, each such translate can be written in the form $\{(x, \phi(x) + d) : x \in G\}$ for some $d \in G'$. Since

$$|c||H_1| \leq |c|^2 \frac{|H|}{|A|} \leq \left(|S|^5 \frac{|A|^{1/2}}{|H|^{1/2}} \right)^2 \frac{|H|}{|A|} = |S|^{10},$$

the result follows. \square

Chapter 10

Approximate homomorphism version of PFR

Definition 10.1 (Additive energy). *If G is a group, and A is a finite subset of G , the additive energy $E(A)$ of A is the number of quadruples $(a_1, a_2, a_3, a_4) \in A^4$ such that $a_1 + a_2 = a_3 + a_4$.*

Lemma 10.2 (Cauchy–Schwarz bound).

If G is a group, A, B are finite subsets of G , then

$$E(A) \geq \frac{|\{(a, a') \in A \times A : a + a' \in B\}|^2}{|B|}.$$

Proof. If B is empty then the claim is trivial (with the Lean convention 0/0), so without loss of generality B is non-empty. We can rewrite

$$|\{(a, a') \in A \times A : a + a' \in B\}| = \sum_{b \in B} r(b)$$

where $r : G \rightarrow \mathbb{N}$ is the counting function

$$r(b) := |\{(a, a') \in A \times A : a + a' = b\}|.$$

From double counting we have

$$\sum_{b \in G} r(b)^2 = E(A).$$

The claim now follows from the Cauchy–Schwarz inequality

$$(\sum_{b \in B} r(b))^2 \leq |B| \sum_{b \in B} r(b)^2.$$

□

Lemma 10.3 (Balog–Szemerédi–Gowers lemma).

Let G be an abelian group, and let A be a finite non-empty set with $E(A) \geq |A|^3/K$ for some $K \geq 1$. Then there is a subset A' of A with $|A'| \geq |A|/(C_1 K^{C_2})$ and $|A' - A'| \leq C_3 K^{C_4} |A|$, where (provisionally)

$$C_1 = 2^4, C_2 = 1, C_3 = 2^{10}, C_4 = 5.$$

Proof. See <https://terrytao.files.wordpress.com/2024/01/simplebsg.pdf>. \square

Theorem 10.4 (Approximate homomorphism form of PFR). *Let G, G' be finite abelian 2-groups. Let $f : G \rightarrow G'$ be a function, and suppose that there are at least $|G|^2/K$ pairs $(x, y) \in G^2$ such that*

$$f(x + y) = f(x) + f(y).$$

*Then there exists a homomorphism $\phi : G \rightarrow G'$ and a constant $c \in G'$ such that $f(x) = \phi(x) + c$ for at least $|G|/(2^{144} * K^{122})$ values of $x \in G$.*

Proof. Consider the graph $A \subset G \times G'$ defined by

$$A := \{(x, f(x)) : x \in G\}.$$

Clearly, $|A| = |G|$. By hypothesis, we have $a + a' \in A$ for at least $|A|^2/K$ pairs $(a, a') \in A^2$. By Lemma 10.2, this implies that $E(A) \geq |A|^3/K^2$. Applying Lemma 10.3, we conclude that there exists a subset $A' \subset A$ with $|A'| \geq |A|/C_1 K^{2C_2}$ and $|A' + A'| \leq C_1 C_3 K^{2(C_2+C_4)} |A'|$. Applying Corollary 13.40, we may find a subspace $H \subset G \times G'$ such that $|H|/|A'| \in [L^{-8}, L^8]$ and a subset c of cardinality at most $L^5 |A'|^{1/2}/|H|^{1/2}$ such that $A' \subseteq c + H$, where $L = C_1 C_3 K^{2(C_2+C_4)}$. If we let H_0, H_1 be as in Lemma 9.2, this implies on taking projections the projection of A' to G is covered by at most $|c|$ translates of H_0 . This implies that

$$|c| |H_0| \geq |A'|;$$

since $|H_0| |H_1| = |H|$, we conclude that

$$|H_1| \leq |c| |H|/|A'|.$$

By hypothesis, A' is covered by at most $|c|$ translates of H , and hence by at most $|c| |H_1|$ translates of $\{(x, \phi(x)) : x \in G\}$. As ϕ is a homomorphism, each such translate can be written in the form $\{(x, \phi(x) + c) : x \in G\}$ for some $c \in G'$. The number of translates is bounded by

$$|c|^2 \frac{|H|}{|A'|} \leq \left(L^5 \frac{|A'|^{1/2}}{|H|^{1/2}} \right)^2 \frac{|H|}{|A'|} = L^{10}.$$

By the pigeonhole principle, one of these translates must then contain at least $|A'|/L^{10} \geq |G|/(C_1 C_3 K^{2(C_2+C_4)})^{10} (C_1 K^{2C_2})$ elements of A' (and hence of A), and the claim follows. \square

With a bit more effort, we can remove the constant term c , at the cost of reducing the set of agreement slightly. We need some preliminary lemmas.

Lemma 10.5 (Duality). *Let G be a finite abelian 2-group. Then the finite abelian 2-group $\text{Hom}(G, \mathbb{Z}/2\mathbb{Z})$ of homomorphisms from G to $\mathbb{Z}/2\mathbb{Z}$ has the same order as G .*

Proof. By the classification of finite abelian groups, G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$. Then $\text{Hom}(G, \mathbb{Z}/2\mathbb{Z})$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$ as well, and hence has the same order. \square

Lemma 10.6 (Counting). *Let G be a finite abelian 2-group, and let $x \in G$ be non-zero. Then there are $|G|/2$ homomorphisms $\phi : G \rightarrow \mathbb{Z}/2\mathbb{Z}$ such that $\phi(x) = 1$.*

Proof. The map $\phi \mapsto \phi(x)$ is a homomorphism from $\text{Hom}(G, \mathbb{Z}/2\mathbb{Z})$ to $\mathbb{Z}/2\mathbb{Z}$, and by Lemma 10.5 the kernel has order equal to the order of $G/\{0, x\}$, which is $|G|/2$. Then the preimage of 1 must also be of order $|G|/2$. \square

Lemma 10.7 (Slicing). *Let G be a finite abelian 2-group, and let A be a subset of G . Then there exists a homomorphism $\phi : G \rightarrow \mathbb{Z}/2\mathbb{Z}$ such that $|A \cap \phi^{-1}(1)| \geq (|A| - 1)/2$.*

Proof. We have

$$\begin{aligned} \sum_{\phi \in \text{Hom}(G, \mathbb{Z}/2\mathbb{Z})} |A \cap \phi^{-1}(1)| &= \sum_{x \in A} |\{\phi \in \text{Hom}(G, \mathbb{Z}/2\mathbb{Z}) : \phi(x) = 1\}| \\ &\geq (|A| - 1)|G|/2 \end{aligned}$$

thanks to Lemma 10.6. The claim now follows from Lemma 10.5 and the pigeonhole principle. \square

Corollary 10.8 (Approximate homomorphism form of PFR, no constant term). *Let G, G' be finite abelian 2-groups. Let $f : G \rightarrow G'$ be a function, and suppose that there are at least $|G|^2/K$ pairs $(x, y) \in G^2$ such that*

$$f(x + y) = f(x) + f(y).$$

*Then there exists a homomorphism $\phi'' : G \rightarrow G'$ such that $f(x) = \phi''(x)$ for at least $(|G|/(2^{172} * K^{146}) - 1)/2$ values of $x \in G$.*

Proof. By Theorem 10.4, there exists a homomorphism $\phi : G \rightarrow G'$ and a constant $c \in G'$ such that the set $A := \{x \in G : f(x) = \phi(x) + c\}$ has cardinality at least $|G|/(2^{172} * K^{146})$. By Lemma 10.7, there exists a homomorphism $\phi' : G \rightarrow \mathbb{Z}/2\mathbb{Z}$ such that

$$|A \cap \phi'^{-1}(1)| \geq (|A| - 1)/2 \geq |G|/(2^{173} * K^{146}).$$

Then the claim follows by taking $\phi'' = \phi + \phi' \bullet c$ (where we view G' as a $\mathbb{Z}/2\mathbb{Z}$ -module). \square

Chapter 11

Weak PFR over the integers

Lemma 11.1. *If G is torsion-free and X, Y are G -valued random variables then $d[X; 2Y] \leq 5d[X; Y]$.*

Proof. Let Y_1, Y_2 be independent copies of Y (also independent of X). Since G is torsion-free we know $X, Y_1 - Y_2, X - 2Y_1$ uniquely determine X, Y_1, Y_2 and so

$$\mathbb{H}(X, Y_1, Y_2, X - 2Y_1) = \mathbb{H}(X, Y_1, Y_2) = \mathbb{H}(X) + 2\mathbb{H}(Y).$$

Similarly

$$\mathbb{H}(X, X - 2Y_1) = \mathbb{H}(X) + \mathbb{H}(2Y_1) = \mathbb{H}(X) + \mathbb{H}(Y).$$

Furthermore

$$\mathbb{H}(Y_1 - Y_2, X - 2Y_1) = \mathbb{H}(Y_1 - Y_2, X - Y_1 - Y_2) \leq \mathbb{H}(Y_1 - Y_2) + \mathbb{H}(X - Y_1 - Y_2).$$

By submodularity (Corollary 2.21)

$$\mathbb{H}(X, Y_1, Y_2, X - 2Y_1) + \mathbb{H}(X - 2Y_1) \leq \mathbb{H}(X, X - 2Y_1) + \mathbb{H}(Y_1 - Y_2, X - 2Y_1).$$

Combining these inequalities

$$\mathbb{H}(X - 2Y_1) \leq \mathbb{H}(Y_1 - Y_2) + \mathbb{H}(X - Y_1 - Y_2) - \mathbb{H}(Y).$$

Similarly we have

$$\mathbb{H}(Y_1, Y_2, X - Y_1 - Y_2) = \mathbb{H}(X) + 2\mathbb{H}(Y),$$

$$\mathbb{H}(Y_1, X - Y_1 - Y_2) = \mathbb{H}(Y) + \mathbb{H}(X - Y_2),$$

and

$$\mathbb{H}(Y_2, X - Y_1 - Y_2) = \mathbb{H}(Y) + \mathbb{H}(X - Y_1)$$

and by submodularity (Corollary 2.21) again

$$\mathbb{H}(Y_1, Y_2, X - Y_1 - Y_2) + \mathbb{H}(X - Y_1 - Y_2) \leq \mathbb{H}(Y_1, X - Y_1 - Y_2) + \mathbb{H}(Y_2, X - Y_1 - Y_2).$$

Combining these inequalities (and recalling the definition of Ruzsa distance) gives

$$\mathbb{H}(X - Y_1 - Y_2) \leq \mathbb{H}(X - Y_1) + \mathbb{H}(X - Y_2) - \mathbb{H}(X) = 2d[X; Y] + \mathbb{H}(Y).$$

It follows that

$$\mathbb{H}(X - 2Y_1) \leq \mathbb{H}(Y_1 - Y_2) + 2d[X; Y]$$

and so (using $\mathbb{H}(2Y) = \mathbb{H}(Y)$)

$$\begin{aligned} d[X; 2Y] &= \mathbb{H}(X - 2Y_1) - \mathbb{H}(X)/2 - \mathbb{H}(2Y)/2 \\ &\leq \mathbb{H}(Y_1 - Y_2) + 2d[X; Y] - \mathbb{H}(X)/2 - \mathbb{H}(Y)/2 \\ &= d[Y_1; Y_2] + \frac{\mathbb{H}(Y) - \mathbb{H}(X)}{2} + 2d[X; Y]. \end{aligned}$$

Finally note that by the triangle inequality (Lemma 3.18) we have

$$d[Y_1; Y_2] \leq d[Y_1; X] + d[X; Y_2] = 2d[X; Y].$$

The result follows from $(\mathbb{H}(Y) - \mathbb{H}(X))/2 \leq d[X; Y]$ (Lemma 3.13). \square

Lemma 11.2. *If G is a torsion-free group and X, Y are G -valued random variables and $\phi : G \rightarrow \mathbb{F}_2^d$ is a homomorphism then*

$$\mathbb{H}(\phi(X)) \leq 10d[X; Y].$$

Proof. By Corollary 5.2 and Lemma 11.1 we have

$$d[\phi(X); \phi(2Y)] \leq d[X; 2Y] \leq 5d[X; Y]$$

and $\phi(2Y) = 2\phi(Y) \equiv 0$ so the left-hand side is equal to $d[\phi(X); 0] = \mathbb{H}(\phi(X))/2$ (using Lemma 3.9). \square

Lemma 11.3. *Let $G = \mathbb{F}_2^n$ and $\alpha \in (0, 1)$ and let X, Y be G -valued random variables such that*

$$\mathbb{H}(X) + \mathbb{H}(Y) > \frac{20}{\alpha}d[X; Y].$$

There is a non-trivial subgroup $H \leq G$ such that

$$\log|H| < \frac{1+\alpha}{2}(\mathbb{H}(X) + \mathbb{H}(Y))$$

and

$$\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) < \alpha(\mathbb{H}(X) + \mathbb{H}(Y))$$

where $\psi : G \rightarrow G/H$ is the natural projection homomorphism.

Proof. By Theorem 8.9 there exists a subgroup H such that $d[X; U_H] + d[Y; U_H] \leq 10d[X; Y]$. Using Lemma 3.16 we deduce that $\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) \leq 20d[X; Y]$. The second claim follows adding these inequalities and using the assumption on $\mathbb{H}(X) + \mathbb{H}(Y)$.

Furthermore we have by Lemma 3.13

$$\log|H| - \mathbb{H}(X) \leq 2d[X; U_H]$$

and similarly for Y and thus

$$\begin{aligned} \log|H| &\leq \frac{\mathbb{H}(X) + \mathbb{H}(Y)}{2} + d[X; U_H] + d[Y; U_H] \leq \frac{\mathbb{H}(X) + \mathbb{H}(Y)}{2} + 10d[X; Y] \\ &< \frac{1+\alpha}{2}(\mathbb{H}(X) + \mathbb{H}(Y)). \end{aligned}$$

Finally note that if H were trivial then $\psi(X) = X$ and $\psi(Y) = Y$ and hence $\mathbb{H}(X) + \mathbb{H}(Y) = 0$, which contradicts Lemma 3.15. \square

Lemma 11.4. *If $G = \mathbb{F}_2^d$ and $\alpha \in (0, 1)$ and X, Y are G -valued random variables then there is a subgroup $H \leq \mathbb{F}_2^d$ such that*

$$\log|H| \leq \frac{1+\alpha}{2(1-\alpha)}(\mathbb{H}(X) + \mathbb{H}(Y))$$

and if $\psi : G \rightarrow G/H$ is the natural projection then

$$\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) \leq \frac{20}{\alpha}d[\psi(X); \psi(Y)].$$

Proof. Let $H \leq \mathbb{F}_2^d$ be a maximal subgroup such that

$$\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) > \frac{20}{\alpha}d[\psi(X); \psi(Y)]$$

and such that there exists $c \geq 0$ with

$$\log|H| \leq \frac{1+\alpha}{2(1-\alpha)}(1-c)(\mathbb{H}(X) + \mathbb{H}(Y))$$

and

$$\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) \leq c(\mathbb{H}(X) + \mathbb{H}(Y)).$$

Note that this exists since $H = \{0\}$ is an example of such a subgroup or we are done with this choice of H .

We know that G/H is a 2-elementary group and so by Lemma 11.3 there exists some non-trivial subgroup $H' \leq G/H$ such that

$$\log|H'| < \frac{1+\alpha}{2}(\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)))$$

and

$$\mathbb{H}(\psi' \circ \psi(X)) + \mathbb{H}(\psi' \circ \psi(Y)) < \alpha(\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)))$$

where $\psi' : G/H \rightarrow (G/H)/H'$. By group isomorphism theorems we know that there exists some H'' with $H \leq H'' \leq G$ such that $H' \cong H''/H$ and $\psi' \circ \psi(X) = \psi''(X)$ where $\psi'' : G \rightarrow G/H''$ is the projection homomorphism.

Since H' is non-trivial we know that H is a proper subgroup of H'' . On the other hand we know that

$$\log|H''| = \log|H'| + \log|H| < \frac{1+\alpha}{2(1-\alpha)}(1-\alpha c)(\mathbb{H}(X) + \mathbb{H}(Y))$$

and

$$\mathbb{H}(\psi''(X)) + \mathbb{H}(\psi''(Y)) < \alpha(\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y))) \leq \alpha c(\mathbb{H}(X) + \mathbb{H}(Y)).$$

Therefore (using the maximality of H) it must be the first condition that fails, whence

$$\mathbb{H}(\psi''(X)) + \mathbb{H}(\psi''(Y)) \leq \frac{20}{\alpha}d[\psi''(X); \psi''(Y)].$$

□

We could use the previous lemma for any value of $\alpha \in (0, 1)$, which would give a whole range of estimates in Theorem 11.10. For definiteness, we specialize only to $\alpha = 3/5$, which gives a constant 2 in the first bound below.

Lemma 11.5. *If $G = \mathbb{F}_2^d$ and $\alpha \in (0, 1)$ and X, Y are G -valued random variables then there is a subgroup $H \leq \mathbb{F}_2^d$ such that*

$$\log|H| \leq 2(\mathbb{H}(X) + \mathbb{H}(Y))$$

and if $\psi : G \rightarrow G/H$ is the natural projection then

$$\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(Y)) \leq 34d[\psi(X); \psi(Y)].$$

Proof. Specialize Lemma 11.4 to $\alpha = 3/5$. In the second inequality, it gives a bound $100/3 < 34$. \square

Lemma 11.6. *Let $\phi : G \rightarrow H$ be a homomorphism and $A, B \subseteq G$ be finite subsets. If $x, y \in H$ then let $A_x = A \cap \phi^{-1}(x)$ and $B_y = B \cap \phi^{-1}(y)$. There exist $x, y \in H$ such that A_x, B_y are both non-empty and*

$$d[\phi(U_A); \phi(U_B)] \log \frac{|A||B|}{|A_x||B_y|} \leq (\mathbb{H}(\phi(U_A)) + \mathbb{H}(\phi(U_B)))(d(U_A, U_B) - d(U_{A_x}, U_{B_y})).$$

Proof. The random variables $(U_A \mid \phi(U_A) = x)$ and $(U_B \mid \phi(U_B) = y)$ are equal in distribution to U_{A_x} and U_{B_y} respectively (both are uniformly distributed over their respective fibres). It follows from Proposition 5.1 that

$$\begin{aligned} \sum_{x,y \in H} \frac{|A_x||B_y|}{|A||B|} d[U_{A_x}; U_{B_y}] &= d[U_A \mid \phi(U_A); U_B \mid \phi(U_B)] \\ &\leq d[U_A; U_B] - d[\phi(U_A); \phi(U_B)]. \end{aligned}$$

Therefore with $M := \mathbb{H}(\phi(U_A)) + \mathbb{H}(\phi(U_B))$ we have

$$\left(\sum_{x,y \in H} \frac{|A_x||B_y|}{|A||B|} M d[U_{A_x}; U_{B_y}] \right) + M d[\phi(U_A); \phi(U_B)] \leq M d[U_A; U_B].$$

Since

$$M = \sum_{x,y \in H} \frac{|A_x||B_y|}{|A||B|} \log \frac{|A||B|}{|A_x||B_y|}$$

we have

$$\sum_{x,y \in H} \frac{|A_x||B_y|}{|A||B|} \left(M d[U_{A_x}; U_{B_y}] + d[\phi(U_A); \phi(U_B)] \log \frac{|A||B|}{|A_x||B_y|} \right) \leq M d[U_A; U_B].$$

It follows that there exists some $x, y \in H$ such that $|A_x|, |B_y| \neq 0$ and

$$M d[U_{A_x}; U_{B_y}] + d[\phi(U_A); \phi(U_B)] \log \frac{|A||B|}{|A_x||B_y|} \leq M d[U_A; U_B].$$

\square

Definition 11.7. *If $A \subseteq \mathbb{Z}^d$ then by $\dim(A)$ we mean the dimension of the span of $A - A$ over the reals – equivalently, the smallest d' such that A lies in a coset of a subgroup isomorphic to $\mathbb{Z}^{d'}$.*

Theorem 11.8. *If $A, B \subseteq \mathbb{Z}^d$ are finite non-empty sets then there exist non-empty $A' \subseteq A$ and $B' \subseteq B$ such that*

$$\log \frac{|A||B|}{|A'||B'|} \leq 34d[U_A; U_B]$$

such that $\max(\dim A', \dim B') \leq \frac{40}{\log 2}d[U_A; U_B]$.

Proof. Without loss of generality we can assume that A and B are not both inside (possibly distinct) cosets of the same subgroup of \mathbb{Z}^d , or we just replace \mathbb{Z}^d with that subgroup. We prove the result by induction on $|A| + |B|$.

Let $\phi : \mathbb{Z}^d \rightarrow \mathbb{F}_2^d$ be the natural mod-2 homomorphism. By Lemma 11.2

$$\max(\mathbb{H}(\phi(U_A)), \mathbb{H}(\phi(U_B))) \leq 10d[U_A; U_B].$$

We now apply Lemma 11.5, obtaining some subgroup $H \leq \mathbb{F}_2^d$ such that

$$\log|H| \leq 40d[U_A; U_B]$$

and

$$\mathbb{H}(\tilde{\phi}(U_A)) + \mathbb{H}(\tilde{\phi}(U_B)) \leq 34d[\tilde{\phi}(U_A); \tilde{\phi}(U_B)]$$

where $\tilde{\phi} : \mathbb{Z}^d \rightarrow \mathbb{F}_2^d/H$ is ϕ composed with the projection onto \mathbb{F}_2^d/H .

By Lemma 11.6 there exist $x, y \in \mathbb{F}_2^d/H$ such that, with $A_x = A \cap \tilde{\phi}^{-1}(x)$ and similarly for B_y ,

$$\log \frac{|A||B|}{|A_x||B_y|} \leq 34(d[U_A; U_B] - d[U_{A_x}; U_{B_y}]).$$

Suppose first that $|A_x| + |B_y| = |A| + |B|$. This means that $\tilde{\phi}(A) = \{x\}$ and $\tilde{\phi}(B) = \{y\}$, and hence both A and B are in cosets of $\ker \tilde{\phi}$. Since by assumption A, B are not in cosets of a proper subgroup of \mathbb{Z}^d this means $\ker \tilde{\phi} = \mathbb{Z}^d$, and so (examining the definition of $\tilde{\phi}$) we must have $H = \mathbb{F}_2^d$. Then our bound on $\log|H|$ forces $d \leq \frac{40}{\log 2}d[U_A; U_B]$ and we are done with $A' = A$ and $B' = B$.

Otherwise,

$$|A_x| + |B_y| < |A| + |B|.$$

By induction we can find some $A' \subseteq A_x$ and $B' \subseteq B_y$ such that $\dim A', \dim B' \leq \frac{40}{\log 2}d[U_{A_x}; U_{B_y}] \leq \frac{40}{\log 2}d[U_A; U_B]$ and

$$\log \frac{|A_x||B_y|}{|A'||B'|} \leq 34d[U_{A_x}; U_{B_y}].$$

Adding these inequalities implies

$$\log \frac{|A||B|}{|A'||B'|} \leq 34d[U_A; U_B]$$

as required. \square

Theorem 11.9. *If $A \subseteq \mathbb{Z}^d$ is a finite non-empty set with $d[U_A; U_A] \leq \log K$ then there exists a non-empty $A' \subseteq A$ such that*

$$|A'| \geq K^{-17}|A|$$

and $\dim A' \leq \frac{40}{\log 2} \log K$.

Proof. Immediate from Theorem 11.8 and rearranging. \square

Theorem 11.10. *Let $A \subseteq \mathbb{Z}^d$ and $|A - A| \leq K|A|$. There exists $A' \subseteq A$ such that $|A'| \geq K^{-17}|A|$ and $\dim A' \leq \frac{40}{\log 2} \log K$.*

Proof. As in the beginning of Theorem 7.3 the doubling condition forces $d[U_A; U_A] \leq \log K$, and then we apply Theorem 11.9. \square

Chapter 12

The m -torsion case

12.1 Data processing inequality

Lemma 12.1 (Data processing for a single variable). *Let X be a random variable. Then for any function f on the range of X , one has $\mathbb{H}[f(X)] \leq \mathbb{H}[X]$.*

Proof. We have

$$\mathbb{H}[X] = \mathbb{H}[X, f(X)] = \mathbb{H}[f(X)] + \mathbb{H}[X|f(X)]$$

thanks to Lemma 2.2 and Lemma 2.13, giving the claim. \square

Lemma 12.2 (One-sided unconditional data processing inequality). *Let X, Y be random variables. For any function f, g on the range of X , we have $\mathbb{I}[f(X) : Y] \leq \mathbb{I}[X : Y]$.*

Proof. By Lemma 2.16 it suffices to show that $\mathbb{H}[Y|X] \leq \mathbb{H}[Y|f(X)]$. But this follows from Corollary 2.20 (and Lemma 2.2). \square

Lemma 12.3 (Unconditional data processing inequality). *Let X, Y be random variables. For any functions f, g on the ranges of X, Y respectively, we have $\mathbb{I}[f(X) : g(Y)] \leq \mathbb{I}[X : Y]$.*

Proof. From Lemma 12.2, Lemma 2.9 we have $\mathbb{I}[f(X) : Y] \leq \mathbb{I}[X : Y]$ and $\mathbb{I}[f(X) : g(Y)] \leq \mathbb{I}[f(X) : Y]$, giving the claim. \square

Lemma 12.4 (Data processing inequality). *Let X, Y, Z . For any functions f, g on the ranges of X, Y respectively, we have $\mathbb{I}[f(X) : g(Y)|Z] \leq \mathbb{I}[X : Y|Z]$.*

Proof. Apply Lemma 12.3 to X, Y conditioned to the event $Z = z$, multiply by $\mathbf{P}[Z = z]$, and sum using Definition 2.25. \square

12.2 More Ruzsa distance estimates

Let G be an additive group.

Lemma 12.5 (Flipping a sign). *If X, Y are G -valued, then*

$$d[X; -Y] \leq 3d[X; Y].$$

Proof. Without loss of generality (using Lemma 3.10 and Lemma 3.7) we may take X, Y to be independent. By $(X_1, Y_1), (X_2, Y_2)$ be copies of (X, Y) that are conditionally independent over $X_1 - Y_1 = X_2 - Y_2$ (this exists thanks to Lemma 3.22). By Lemma 3.7, we can also find another copy (X_3, Y_3) of (X, Y) that is independent of X_1, Y_1, X_2, Y_2 . From Corollary 2.21, one has

$$\mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3, Y_3, X_3 + Y_3] + \mathbb{H}[X_3 + Y_3] \leq \mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3 + Y_3] + \mathbb{H}[X_3, Y_3, X_3 + Y_3].$$

From Lemma 3.11, Lemma 3.1, Lemma 3.10 we have

$$\mathbb{H}[X_3 + Y_3] = \frac{1}{2}\mathbb{H}[X_3] + \frac{1}{2}\mathbb{H}[-Y_3] + d[X_3; -Y_3] = \frac{1}{2}\mathbb{H}[X] + \frac{1}{2}\mathbb{H}[Y] + d[X; -Y].$$

Since $X_3 + Y_3$ is a function of X_3, Y_3 , we see from Lemma 2.2 and Corollary 2.24 that

$$\mathbb{H}[X_3, Y_3, X_3 + Y_3] = \mathbb{H}[X_3, Y_3] = \mathbb{H}[X, Y] = \mathbb{H}[X] + \mathbb{H}[Y].$$

Because $X_1 - Y_1 = X_2 - Y_2$, we have

$$X_3 + Y_3 = (X_3 - Y_2) - (X_1 - Y_3) + (X_2 + Y_1)$$

and thus by Lemma 2.2

$$\mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3 + Y_3] = \mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1]$$

and hence by Corollary 2.18

$$\mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3 + Y_3] \leq \mathbb{H}[X_3 - Y_2] + \mathbb{H}[X_1 - Y_3] + \mathbb{H}[X_2] + \mathbb{H}[Y_1].$$

Since X_3, Y_2 are independent, we see from Lemma 3.11, Lemma 3.10 that

$$\mathbb{H}[X_3 - Y_2] = \frac{1}{2}\mathbb{H}[X] + \frac{1}{2}\mathbb{H}[Y] + d[X; Y].$$

Similarly

$$\mathbb{H}[X_1 - Y_3] = \frac{1}{2}\mathbb{H}[X] + \frac{1}{2}\mathbb{H}[Y] + d[X; Y].$$

We conclude that

$$\mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3 + Y_3] \leq 2\mathbb{H}[X] + 2\mathbb{H}[Y] + 2d[X; Y].$$

Finally, from Lemma 12.1 we have

$$\mathbb{H}[X_1, Y_1, X_2, Y_2, X_3, Y_3] \leq \mathbb{H}[X_3 - Y_2, X_1 - Y_3, X_2, Y_1, X_3, Y_3, X_3 + Y_3].$$

From Corollary 2.24 followed by Corollary 2.30, we have

$$\mathbb{H}[X_1, Y_1, X_2, Y_2, X_3, Y_3] = \mathbb{H}[X_1, Y_1, X_1 - Y_1] + \mathbb{H}[X_2, Y_2, X_2 - Y_2] - \mathbb{H}[X_1 - Y_1] + \mathbb{H}[X_3, Y_3]$$

and thus by Lemma 3.11, Lemma 3.10, Lemma 2.2, Corollary 2.24

$$\mathbb{H}[X_1, Y_1, X_2, Y_2, X_3, Y_3] = \mathbb{H}[X] + \mathbb{H}[Y] + \mathbb{H}[X] + \mathbb{H}[Y] - \left(\frac{1}{2}\mathbb{H}[X] + \frac{1}{2}\mathbb{H}[Y] + d[X; Y] \right) + \mathbb{H}[X] + \mathbb{H}[Y].$$

Applying all of these estimates, the claim now follows from linear arithmetic. \square

Lemma 12.6 (Kaimonovich–Vershik–Madiman inequality). *If $n \geq 0$ and X, Y_1, \dots, Y_n are jointly independent G -valued random variables, then*

$$\mathbb{H} \left[X + \sum_{i=1}^n Y_i \right] - \mathbb{H}[X] \leq \sum_{i=1}^n (\mathbb{H}[X + Y_i] - \mathbb{H}[X]).$$

Proof. This is trivial for $n = 0, 1$, while the $n = 2$ case is Lemma 3.21. Now suppose inductively that $n > 2$, and the claim was already proven for $n - 1$. By a further application of Lemma 3.21 one has

$$\mathbb{H} \left[X + \sum_{i=1}^n Y_i \right] - \mathbb{H} \left[X + \sum_{i=1}^{n-1} Y_i \right] \leq \mathbb{H}[X + Y_n] - \mathbb{H}[X].$$

By induction hypothesis one has

$$\mathbb{H} \left[X + \sum_{i=1}^{n-1} Y_i \right] - \mathbb{H}[X] \leq \sum_{i=1}^{n-1} \mathbb{H}[X + Y_i] - \mathbb{H}[X].$$

Summing the two inequalities, we obtain the claim. \square

Lemma 12.7 (Kaimonovich–Vershik–Madiman inequality, II). *If $n \geq 1$ and X, Y_1, \dots, Y_n are jointly independent G -valued random variables, then*

$$d[X; \sum_{i=1}^n Y_i] \leq 2 \sum_{i=1}^n d[X; Y_i].$$

Proof. Applying Lemma 12.6 with all the Y_i replaced by $-Y_i$, and using Lemma 3.1 and Lemma 3.11, we obtain after some rearranging

$$d[X; \sum_{i=1}^n Y_i] + \frac{1}{2} (\mathbb{H}[\sum_{i=1}^n Y_i] - \mathbb{H}[X]) \leq \sum_{i=1}^n \left(d[X; Y_i] + \frac{1}{2} (\mathbb{H}[Y_i] - \mathbb{H}[X]) \right).$$

From Corollary 3.5 we have

$$\mathbb{H}[\sum_{i=1}^n Y_i] \geq \mathbb{H}[Y_i]$$

for all i ; subtracting $\mathbb{H}[X]$ and averaging, we conclude that

$$\mathbb{H}[\sum_{i=1}^n Y_i] - \mathbb{H}[X] \geq \frac{1}{n} \sum_{i=1}^n \mathbb{H}[Y_i] - \mathbb{H}[X]$$

and thus

$$d[X; \sum_{i=1}^n Y_i] \leq \sum_{i=1}^n d[X; Y_i] + \frac{n-1}{2n} (\mathbb{H}[Y_i] - \mathbb{H}[X]).$$

From Lemma 3.13 we have

$$\mathbb{H}[Y_i] - \mathbb{H}[X] \leq 2d[X; Y_i].$$

Since $0 \leq \frac{n-1}{2n} \leq \frac{1}{2}$, the claim follows. \square

Lemma 12.8 (Kaimonovich–Vershik–Madiman inequality, III). *If $n \geq 1$ and X, Y_1, \dots, Y_n are jointly independent G -valued random variables, then*

$$d \left[X; \sum_{i=1}^n Y_i \right] \leq d[X; Y_1] + \frac{1}{2} \left(\mathbb{H} \left[\sum_{i=1}^n Y_i \right] - \mathbb{H}[Y_1] \right).$$

Proof. From Lemma 3.21 one has

$$\mathbb{H} \left[-X + \sum_{i=1}^n Y_i \right] \leq \mathbb{H}[-X + Y_1] + \mathbb{H} \left[\sum_{i=1}^n Y_i \right] - \mathbb{H}[Y_1].$$

The claim then follows from Lemma 3.11 and some elementary algebra. \square

Lemma 12.9 (Comparing sums). *Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq l}$ be tuples of jointly independent random variables (so the X 's and Y 's are also independent of each other), and let $f : \{1, \dots, l\} \rightarrow \{1, \dots, m\}$ be a function, then*

$$\mathbb{H} \left[\sum_{j=1}^l Y_j \right] \leq \mathbb{H} \left[\sum_{i=1}^m X_i \right] + \sum_{j=1}^l (\mathbb{H}[Y_j - X_{f(j)}] - \mathbb{H}[X_{f(j)}]).$$

Proof. Write $W := \sum_{i=1}^m X_i$. From Corollary 3.5 we have

$$\mathbb{H} \left[\sum_{j=1}^l Y_j \right] \leq \mathbb{H}[-W + \sum_{j=1}^l Y_j]$$

while from Lemma 12.6 one has

$$\mathbb{H}[-W + \sum_{j=1}^l Y_j] \leq \mathbb{H}[-W] + \sum_{j=1}^l \mathbb{H}[-W + Y_j] - \mathbb{H}[-W].$$

From Lemma 3.21 one has

$$\mathbb{H}[-W + Y_j] - \mathbb{H}[-W] \leq \mathbb{H}[-X_{f(j)} + Y_j] - \mathbb{H}[-X_{f(j)}].$$

The claim now follows from Lemma 3.1 and some elementary algebra. \square

Lemma 12.10 (Sums of dilates I). *Let X, Y, X' be independent G -valued random variables, with X' a copy of X , and let a be an integer. Then*

$$\mathbb{H}[X - (a+1)Y] \leq \mathbb{H}[X - aY] + \mathbb{H}[X - Y - X'] - \mathbb{H}[X]$$

and

$$\mathbb{H}[X - (a-1)Y] \leq \mathbb{H}[X - aY] + \mathbb{H}[X - Y - X'] - \mathbb{H}[X].$$

Proof.

From Lemma 3.17 we have

$$\mathbb{H}[(X - Y) - aY] \leq \mathbb{H}[(X - Y) - X'] + \mathbb{H}[X' - aY] - \mathbb{H}[X']$$

which gives the first inequality. Similarly from Lemma 3.17 we have

$$\mathbb{H}[(X + Y) - aY] \leq \mathbb{H}[(X + Y) - X'] + \mathbb{H}[X' - aY] - \mathbb{H}[X']$$

which (when combined with Lemma 3.1) gives the second inequality. \square

Lemma 12.11 (Sums of dilates II). *Let X, Y be independent G -valued random variables, and let a be an integer. Then*

$$\mathbb{H}[X - aY] - \mathbb{H}[X] \leq 4|a|d[X; Y].$$

Proof. From Lemma 3.21 one has

$$\mathbb{H}[Y - X + X'] - \mathbb{H}[Y - X] \leq \mathbb{H}[Y + X'] - \mathbb{H}[Y] = \mathbb{H}[Y + X] - \mathbb{H}[Y]$$

which by Lemma 3.11 gives

$$\mathbb{H}[X - Y - X'] - \mathbb{H}[X] \leq d[X; Y] + d[X; -Y]$$

and hence by Lemma 12.5

$$\mathbb{H}[X - Y - X'] - \mathbb{H}[X] \leq 4d[X; Y].$$

From Lemma 12.10 we then have

$$\mathbb{H}[X - (a \pm 1)Y] \leq \mathbb{H}[X - aY] + 4d[X; Y]$$

and the claim now follows by an induction on $|a|$. \square

We remark that in the paper [GGMT2024] the variant estimate

$$\mathbb{H}[X - aY] - \mathbb{H}[X] \leq (4 + 10\lceil \log_2 |a| \rceil)d[X; Y]$$

is also proven by a similar method. This variant is superior for $|a| \geq 9$ (or $|a| = 7$); but we will not need this estimate here.

12.3 Multidistance

We continue to let G be an abelian group.

Definition 12.12 (Multidistance). *Let m be a positive integer, and let $X_{[m]} = (X_i)_{1 \leq i \leq m}$ be an m -tuple of G -valued random variables X_i . Then we define*

$$D[X_{[m]}] := \mathbb{H}\left[\sum_{i=1}^m \tilde{X}_i\right] - \frac{1}{m} \sum_{i=1}^m \mathbb{H}[\tilde{X}_i],$$

where the \tilde{X}_i are independent copies of the X_i .

Lemma 12.13 (Multidistance of copy). *If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are such that X_i and Y_i have the same distribution for each i , then $D[X_{[m]}] = D[Y_{[m]}]$.*

Proof. Clear from Lemma 3.6. \square

Lemma 12.14 (Multidistance of independent variables). *If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ are jointly independent, then $D[X_{[m]}] = \mathbb{H}\left[\sum_{i=1}^m X_i\right] - \frac{1}{m} \sum_{i=1}^m \mathbb{H}[X_i]$.*

Proof. Clear from definition. \square

Lemma 12.15 (Nonnegativity). *For any such tuple, we have $D[X_{[m]}] \geq 0$.*

Proof. From Corollary 3.5 one has

$$\mathbb{H}\left[\sum_{i=1}^m \tilde{X}_i\right] \geq \mathbb{H}[\tilde{X}_i]$$

for each $1 \leq i \leq m$. Averaging over i , we obtain the claim. \square

Lemma 12.16 (Relabeling). *If $\phi : \{1, \dots, m\} \rightarrow \{1, \dots, m\}$ is a bijection, then $D[X_{[m]}] = D[(X_{\phi(j)})_{1 \leq j \leq m}]$.*

Proof. Trivial. \square

Lemma 12.17 (Multidistance and Ruzsa distance, I). *Let $m \geq 2$, and let $X_{[m]}$ be a tuple of G -valued random variables. Then*

$$\sum_{1 \leq j, k \leq m: j \neq k} d[X_j; -X_k] \leq m(m-1)D[X_{[m]}].$$

Proof. By Lemma 3.10, Lemma 12.13 we may take the X_i to be jointly independent. From Corollary 3.5, we see that for any distinct $1 \leq j, k \leq m$, we have

$$\mathbb{H}[X_j + X_k] \leq \mathbb{H}\left[\sum_{i=1}^m X_i\right],$$

and hence by Lemma 3.11

$$d[X_j; -X_k] \leq \mathbb{H}\left[\sum_{i=1}^m X_i\right] - \frac{1}{2}\mathbb{H}[X_j] - \frac{1}{2}\mathbb{H}[X_k].$$

Summing this over all pairs (j, k) , $j \neq k$ and using Lemma 12.14, we obtain the claim. \square

Lemma 12.18 (Multidistance and Ruzsa distance, II). *Let $m \geq 2$, and let $X_{[m]}$ be a tuple of G -valued random variables. Then*

$$\sum_{j=1}^m d[X_j; X_j] \leq 2mD[X_{[m]}].$$

Proof. From Lemma 3.18 we have $d[X_j; X_j] \leq 2d[X_j; -X_k]$, and applying this to every summand in Lemma 12.17, we obtain the claim. \square

Lemma 12.19 (Multidistance and Ruzsa distance, III). *Let $m \geq 2$, and let $X_{[m]}$ be a tuple of G -valued random variables. If the X_i all have the same distribution, then $D[X_{[m]}] \leq md[X_i; X_i]$ for any $1 \leq i \leq m$.*

Proof. By Lemma 3.10, Lemma 12.13 we may take the X_i to be jointly independent. Let X_0 be a further independent copy of the X_i . From Lemma 12.6, we have

$$\mathbb{H}[-X_0 + \sum_{i=1}^m X_i] - \mathbb{H}[-X_0] \leq \sum_{i=1}^m \mathbb{H}[X_0 - X_i] - \mathbb{H}[-X_0]$$

and hence by Lemma 3.1 and Lemma 3.11

$$\mathbb{H}[-X_0 + \sum_{i=1}^m X_i] - \mathbb{H}[X_0] \leq md[X_i, X_i].$$

On the other hand, by Corollary 3.5 we have

$$\mathbb{H}\left[\sum_{i=1}^m X_i\right] \leq \mathbb{H}\left[-X_0 + \sum_{i=1}^m X_i\right]$$

and the claim follows. \square

Lemma 12.20 (Multidistance and Ruzsa distance, IV). *Let $m \geq 2$, and let $X_{[m]}$ be a tuple of independent G -valued random variables. Let $W := \sum_{i=1}^m X_i$. Then*

$$d[W; -W] \leq 2D[X_i].$$

Proof. Take $(X'_i)_{1 \leq i \leq m}$ to be further independent copies of $(X_i)_{1 \leq i \leq m}$ (which exist by Lemma 3.7), and write $W' := \sum_{i=1}^m X'_i$. Fix any distinct $a, b \in I$.

From Lemma 3.21 one has

$$\mathbb{H}[W + W'] \leq \mathbb{H}[W] + \mathbb{H}[X_a + W'] - \mathbb{H}[X_a] \quad (12.1)$$

and also

$$\mathbb{H}[X_a + W'] \leq \mathbb{H}[X_a + X_b] + \mathbb{H}[W'] - \mathbb{H}[X'_b].$$

Combining this with (12.1) and then applying Corollary 3.5 we have

$$\begin{aligned} \mathbb{H}[W + W'] &\leq 2\mathbb{H}[W] + \mathbb{H}[X_a + X_b] - \mathbb{H}[X_a] - \mathbb{H}[X_b] \\ &\leq 3\mathbb{H}[W] - \mathbb{H}[X_a] - \mathbb{H}[X_b]. \end{aligned}$$

Averaging this over all choices of (a, b) gives $\mathbb{H}[W] + 2D[X_{[m]}]$, and the claim follows from Lemma 3.11. \square

Proposition 12.21 (Vanishing). *If $D[X_{[m]}] = 0$, then for each $1 \leq i \leq m$ there is a finite subgroup $H_i \leq G$ such that $d[X_i; U_{H_i}] = 0$.*

Proof. From Lemma 12.18 and Lemma 3.15 we have $d[X_j; X_j] = 0$ for all $1 \leq j \leq m$. The claim now follows from Corollary 4.6. \square

With more effort one can show that H_i is independent of i , but we will not need to do so here.

12.4 The tau functional

Fix $m \geq 2$, and a reference variable X^0 in G .

Definition 12.22 (η). *We set $\eta := \frac{1}{32m^3}$.*

Definition 12.23 (τ -functional). *If $(X_i)_{1 \leq i \leq m}$ is a tuple, we define its τ -functional*

$$\tau[(X_i)_{1 \leq i \leq m}] := D[(X_i)_{1 \leq i \leq m}] + \eta \sum_{i=1}^m d[X_i; X^0].$$

Definition 12.24 (τ -minimizer).

A τ -minimizer is a tuple $(X_i)_{1 \leq i \leq m}$ that minimizes the τ -functional among all tuples of G -valued random variables.

Proposition 12.25 (Existence of τ -minimizer). *If G is finite, then a τ -minimizer exists.*

Proof. This is similar to the proof of Proposition 6.5. \square

Proposition 12.26 (Minimizer close to reference variables). *If $(X_i)_{1 \leq i \leq m}$ is a τ -minimizer, then $\sum_{i=1}^m d[X_i; X^0] \leq \frac{2m}{\eta} d[X^0; X^0]$.*

Proof. By Definition 12.24 we have

$$\tau[(X_i)_{1 \leq i \leq m}] \leq \tau[(X^0)_{1 \leq i \leq m}]$$

and hence by Definition 12.23 and Lemma 12.15

$$\eta \sum_{i=1}^m d[X_i; X^0] \leq D[(X^0)_{1 \leq i \leq m}] + m d[X^0; X^0].$$

The claim now follows from Lemma 12.19. \square

Lemma 12.27 (Lower bound on multidistance). *If $(X_i)_{1 \leq i \leq m}$ is a τ -minimizer, and $k := D[(X_i)_{1 \leq i \leq m}]$, then for any other tuple $(X'_i)_{1 \leq i \leq m}$, one has*

$$k - D[(X'_i)_{1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i].$$

Proof. By Definition 12.24 we have

$$\tau[(X_i)_{1 \leq i \leq m}] \leq \tau[(X'_i)_{1 \leq i \leq m}]$$

and hence by Definition 12.23

$$k + \eta \sum_{i=1}^m d[X_i; X^0] \leq D[(X'_i)_{1 \leq i \leq m}] + \eta \sum_{i=1}^m d[X'_i; X^0].$$

On the other hand, by Lemma 3.18 we have

$$d[X'_i; X^0] \leq d[X_i; X^0] + d[X_i; X'_i].$$

The claim follows. \square

Definition 12.28 (Conditional multidistance). *If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are tuples of random variables, with the X_i being G -valued (but the Y_i need not be), then we define*

$$D[X_{[m]}|Y_{[m]}] = \sum_{(y_i)_{1 \leq i \leq m}} \left(\prod_{1 \leq i \leq m} p_{Y_i}(y_i) \right) D[(X_i | Y_i = y_i)_{1 \leq i \leq m}] \quad (12.2)$$

where each y_i ranges over the support of p_{Y_i} for $1 \leq i \leq m$.

Lemma 12.29 (Alternate form of conditional multidistance). *If the (X_i, Y_i) are independent,*

$$D[X_{[m]}|Y_{[m]}] := \mathbb{H}\left[\sum_{i=1}^m X_i | (Y_j)_{1 \leq j \leq m}\right] - \frac{1}{m} \sum_{i=1}^m \mathbb{H}[X_i | Y_i]. \quad (12.3)$$

Proof. This is routine from Definition 2.11 and Definitions 12.12 and 12.28. \square

Lemma 12.30 (Conditional multidistance nonnegative). *If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are tuples of random variables, then $D[X_{[m]}|Y_{[m]}] \geq 0$.*

Proof. Clear from Lemma 12.15 and Definition 12.28, except that some care may need to be taken to deal with the y_i where p_{Y_i} vanish. \square

Lemma 12.31 (Lower bound on conditional multidistance). *If $(X_i)_{1 \leq i \leq m}$ is a τ -minimizer, and $k := D[(X_i)_{1 \leq i \leq m}]$, then for any other tuples $(X'_i)_{1 \leq i \leq m}$ and $(Y_i)_{1 \leq i \leq m}$ with the X'_i G -valued, one has*

$$k - D[(X'_i)_{1 \leq i \leq m} | (Y_i)_{1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i | Y_i].$$

Proof. Immediate from Lemma 12.27, Lemma 12.29, and Definition 3.19. \square

Corollary 12.32 (Lower bound on conditional multidistance, II). *With the notation of the previous lemma, we have*

$$k - D[X'_{[m]} | Y_{[m]}] \leq \eta \sum_{i=1}^m d[X_{\sigma(i)}; X'_i | Y_i] \quad (12.4)$$

for any permutation $\sigma : \{1, \dots, m\} \rightarrow \{1, \dots, m\}$.

Proof. This follows from Lemma 12.31 and Lemma 12.16. \square

12.5 The multidistance chain rule

Lemma 12.33 (Multidistance chain rule). *Let $\pi : G \rightarrow H$ be a homomorphism of abelian groups and let $X_{[m]}$ be a tuple of jointly independent G -valued random variables. Then $D[X_{[m]}]$ is equal to*

$$D[X_{[m]} | \pi(X_{[m]})] + D[\pi(X_{[m]})] + \mathbb{I}[\sum_{i=1}^m X_i : \pi(X_{[m]}) \mid \pi(\sum_{i=1}^m X_i)] \quad (12.5)$$

where $\pi(X_{[m]}) := (\pi(X_i))_{1 \leq i \leq m}$.

Proof. For notational brevity during this proof, write $S := \sum_{i=1}^m X_i$.

From Lemma 2.26 and Lemma 2.2, noting that $\pi(S)$ is determined both by S and by $\pi(X_{[m]})$, we have

$$\mathbb{I}[S : \pi(X_{[m]}) | \pi(S)] = \mathbb{H}[S] + \mathbb{H}[\pi(X_{[m]})] - \mathbb{H}[S, \pi(X_{[m]})] - \mathbb{H}[\pi(S)],$$

and by Lemma 2.13 the right-hand side is equal to

$$\mathbb{H}[S] - \mathbb{H}[S | \pi(X_{[m]})] - \mathbb{H}[\pi(S)].$$

Therefore,

$$\mathbb{H}[S] = \mathbb{H}[S | \pi(X_{[m]})] + \mathbb{H}[\pi(S)] + \mathbb{I}[S : \pi(X_{[m]}) | \pi(S)]. \quad (12.6)$$

From a further application of Lemma 2.13 and Lemma 2.2 we have

$$\mathbb{H}[X_i] = \mathbb{H}[X_i | \pi(X_i)] + \mathbb{H}[\pi(X_i)] \quad (12.7)$$

for all $1 \leq i \leq m$. Averaging (12.7) in i and subtracting this from (12.6), we obtain the claim from Definition 12.12. \square

We will need to iterate the multidistance chain rule, so it is convenient to observe a conditional version of this rule, as follows.

Lemma 12.34 (Conditional multidistance chain rule). *Let $\pi: G \rightarrow H$ be a homomorphism of abelian groups. Let I be a finite index set and let $X_{[m]}$ be a tuple of G -valued random variables. Let $Y_{[m]}$ be another tuple of random variables (not necessarily G -valued). Suppose that the pairs (X_i, Y_i) are jointly independent of one another (but X_i need not be independent of Y_i). Then*

$$\begin{aligned} D[X_{[m]} | Y_{[m]}] &= D[X_{[m]} | \pi(X_{[m]}), Y_{[m]}] + D[\pi(X_{[m]}) | Y_{[m]}] \\ &\quad + \mathbb{I}\left[\sum_{i=1}^m X_i : \pi(X_{[m]}) \mid \pi\left(\sum_{i=1}^m X_i\right), Y_{[m]}\right]. \end{aligned} \quad (12.8)$$

Proof. For each y_i in the support of p_{Y_i} , apply Lemma 12.33 with X_i replaced by the conditioned random variable $(X_i | Y_i = y_i)$, and the claim (12.8) follows by averaging (12.5) in the y_i using the weights p_{Y_i} . \square

We can iterate the above lemma as follows.

Lemma 12.35. *Let m be a positive integer. Suppose one has a sequence*

$$G_m \rightarrow G_{m-1} \rightarrow \dots \rightarrow G_1 \rightarrow G_0 = \{0\} \quad (12.9)$$

of homomorphisms between abelian groups G_0, \dots, G_m , and for each $d = 0, \dots, m$, let $\pi_d: G_m \rightarrow G_d$ be the homomorphism from G_m to G_d arising from this sequence by composition (so for instance π_m is the identity homomorphism and π_0 is the zero homomorphism). Let $X_{[m]} = (X_i)_{1 \leq i \leq m}$ be a jointly independent tuple of G_m -valued random variables. Then

$$\begin{aligned} D[X_{[m]}] &= \sum_{d=1}^m D[\pi_d(X_{[m]}) | \pi_{d-1}(X_{[m]})] \\ &\quad + \sum_{d=1}^{m-1} \mathbb{I}\left[\sum_i X_i : \pi_d(X_{[m]}) \mid \pi_d\left(\sum_i X_i\right), \pi_{d-1}(X_{[m]})\right]. \end{aligned} \quad (12.10)$$

In particular, by Lemma 2.27,

$$\begin{aligned} D[X_{[m]}] &\geq \sum_{d=1}^m D[\pi_d(X_{[m]}) | \pi_{d-1}(X_{[m]})] \\ &\quad + \mathbb{I}\left[\sum_i X_i : \pi_1(X_{[m]}) \mid \pi_1\left(\sum_i X_i\right)\right]. \end{aligned} \quad (12.11)$$

Proof. From Lemma 12.34 (taking $Y_{[m]} = \pi_{d-1}(X_{[m]})$ and $\pi = \pi_d$ there, and noting that $\pi_d(X_{[m]})$ determines $Y_{[m]}$) we have

$$\begin{aligned} D[X_{[m]} | \pi_{d-1}(X_{[m]})] &= D[X_{[m]} | \pi_d(X_{[m]})] + D[\pi_d(X_{[m]}) | \pi_{d-1}(X_{[m]})] \\ &\quad + \mathbb{I}\left[\sum_{i=1}^m X_i : \pi_d(X_{[m]}) \mid \pi_d\left(\sum_{i=1}^m X_i\right), \pi_{d-1}(X_{[m]})\right] \end{aligned}$$

for $d = 1, \dots, m$. The claim follows by telescoping series, noting that $D[X_{[m]} | \pi_0(X_{[m]})] = D[X_{[m]}]$ and that $\pi_m(X_{[m]}) = X_{[m]}$ (and also $\pi_m(\sum_i X_i) = \sum_i X_i$). \square

In our application we will need the following special case of the above lemma.

Corollary 12.36. *Let G be an abelian group and let $m \geq 2$. Suppose that $X_{i,j}$, $1 \leq i, j \leq m$, are independent G -valued random variables. Then*

$$\begin{aligned} & \mathbb{I}\left[\left(\sum_{i=1}^m X_{i,j}\right)_{j=1}^m : \left(\sum_{j=1}^m X_{i,j}\right)_{i=1}^m \mid \sum_{i=1}^m \sum_{j=1}^m X_{i,j}\right] \\ & \leq \sum_{j=1}^{m-1} \left(D[(X_{i,j})_{i=1}^m] - D[(X_{i,j})_{i=1}^m \mid (X_{i,j} + \dots + X_{i,m})_{i=1}^m] \right) \\ & \quad + D[(X_{i,m})_{i=1}^m] - D\left[\left(\sum_{j=1}^m X_{i,j}\right)_{i=1}^m\right], \end{aligned}$$

where all the multidistances here involve the indexing set $\{1, \dots, m\}$.

Proof. In Lemma 12.35 we take $G_d := G^d$ with the maps $\pi_d: G^m \rightarrow G^d$ for $d = 1, \dots, m$ defined by

$$\pi_d(x_1, \dots, x_m) := (x_1, \dots, x_{d-1}, x_d + \dots + x_m)$$

with $\pi_0 = 0$. Since $\pi_{d-1}(x)$ can be obtained from $\pi_d(x)$ by applying a homomorphism, we obtain a sequence of the form (12.9).

Now we apply Lemma 12.35 with $I = \{1, \dots, m\}$ and $X_i := (X_{i,j})_{j=1}^m$. Using joint independence and Corollary 2.24, we find that

$$D[X_{[m]}] = \sum_{j=1}^m D[(X_{i,j})_{1 \leq i \leq m}].$$

On the other hand, for $1 \leq j \leq m-1$, we see that once $\pi_j(X_i)$ is fixed, $\pi_{j+1}(X_i)$ is determined by $X_{i,j}$ and vice versa, so

$$D[\pi_{j+1}(X_{[m]}) \mid \pi_j(X_{[m]})] = D[(X_{i,j})_{1 \leq i \leq m} \mid \pi_j(X_{[m]})].$$

Since the $X_{i,j}$ are jointly independent, we may further simplify:

$$D[(X_{i,j})_{1 \leq i \leq m} \mid \pi_j(X_{[m]})] = D[(X_{i,j})_{1 \leq i \leq m} \mid (X_{i,j} + \dots + X_{i,m})_{1 \leq i \leq m}].$$

Putting all this into the conclusion of Lemma 12.35, we obtain

$$\begin{aligned} \sum_{j=1}^m D[(X_{i,j})_{1 \leq i \leq m}] & \geq \sum_{j=1}^{m-1} D[(X_{i,j})_{1 \leq i \leq m} \mid (X_{i,j} + \dots + X_{i,m})_{1 \leq i \leq m}] \\ & \quad + D\left[\left(\sum_{j=1}^m X_{i,j}\right)_{1 \leq i \leq m}\right] \\ & \quad + \mathbb{I}\left[\left(\sum_{i=1}^m X_{i,j}\right)_{j=1}^m : \left(\sum_{j=1}^m X_{i,j}\right)_{i=1}^m \mid \sum_{i=1}^m \sum_{j=1}^m X_{i,j}\right] \end{aligned}$$

and the claim follows by rearranging. \square

12.6 Bounding the mutual information

As before, G is an abelian group, and $m \geq 2$. We let $X_{[m]} = (X_i)_{i=1}^m$ be a τ -minimizer.

Proposition 12.37 (Bounding mutual information). *Suppose that $X_{i,j}$, $1 \leq i, j \leq m$, are jointly independent G -valued random variables, such that for each $j = 1, \dots, m$, the random variables $(X_{i,j})_{i=1}^m$ coincide in distribution with some permutation of $X_{[m]}$. Write*

$$\mathcal{I} := \mathbb{I}\left[\left(\sum_{i=1}^m X_{i,j}\right)_{j=1}^m : \left(\sum_{j=1}^m X_{i,j}\right)_{i=1}^m \mid \sum_{i=1}^m \sum_{j=1}^m X_{i,j}\right].$$

Then

$$\mathcal{I} \leq m(4m + 1)\eta k. \quad (12.12)$$

Proof. For each $j \in \{1, \dots, m\}$ we call the tuple $(X_{i,j})_{i=1}^m$ a *column* and for each $i \in \{1, \dots, m\}$ we call the tuple $(X_{i,j})_{j=1}^m$ a *row*. Hence, by hypothesis, each column is a permutation of $X_{[m]} = (X_i)_{i=1}^m$.

From Corollary 12.36 we have

$$\mathcal{I} \leq \sum_{j=1}^{m-1} A_j + B, \quad (12.13)$$

where

$$A_j := D[(X_{i,j})_{i=1}^m] - D[(X_{i,j})_{i=1}^m \mid (X_{i,j} + \dots + X_{i,m})_{i=1}^m]$$

and

$$B := D[(X_{i,m})_{i=1}^m] - D\left[\left(\sum_{j=1}^m X_{i,j}\right)_{i=1}^m\right].$$

We first consider the A_j , for fixed $j \in \{1, \dots, m-1\}$. By Lemma 12.16 and our hypothesis on columns, we have

$$D[(X_{i,j})_{i=1}^m] = D[(X_i)_{i=1}^m] = k.$$

Let $\sigma = \sigma_j: I \rightarrow I$ be a permutation such that $X_{i,j} \equiv X_{\sigma(i)}$, and write $X'_i := X_{i,j}$ and $Y_i := X_{i,j} + \dots + X_{i,m}$. By Corollary 12.32, we have

$$A_j \leq \eta \left(\sum_{i=1}^m d[X_{i,j}; X_{i,j} \mid X_{i,j} + \dots + X_{i,m}] \right). \quad (12.14)$$

We similarly consider B . By Lemma 12.16 applied to the m -th column,

$$D[(X_{i,m})_{i=1}^m] = D[X_{[m]}] = k.$$

For $1 \leq i \leq m$, denote the sum of row i by

$$V_i := \sum_{j=1}^m X_{i,j};$$

if we apply Corollary 12.32 again, now with $X_{\sigma(i)} = X_{i,m}$, $X'_i := V_i$, and with the variable Y_i being trivial, we obtain

$$B \leq \eta \sum_{i=1}^m d[X_{i,m}; V_i]. \quad (12.15)$$

It remains to bound the distances appearing in (12.14) and (12.15) further using Ruzsa calculus. For $1 \leq j \leq m-1$ and $1 \leq i \leq m$, by Lemma 3.25 we have

$$\begin{aligned} d[X_{i,j}; X_{i,j}|X_{i,j} + \dots + X_{i,m}] &\leq d[X_{i,j}; X_{i,j}] \\ &+ \frac{1}{2}(\mathbb{H}[X_{i,j} + \dots + X_{i,m}] - \mathbb{H}[X_{i,j+1} + \dots + X_{i,m}]). \end{aligned}$$

For each i , summing over $j = 1, \dots, m-1$ gives

$$\begin{aligned} \sum_{j=1}^{m-1} d[X_{i,j}; X_{i,j}|X_{i,j} + \dots + X_{i,m}] \\ \leq \sum_{j=1}^{m-1} d[X_{i,j}; X_{i,j}] + \frac{1}{2}(\mathbb{H}[V_i] - \mathbb{H}[X_{i,m}]). \end{aligned} \quad (12.16)$$

On the other hand, by Lemma 12.8 (since $X_{i,m}$ appears in the sum V_i) we have

$$d[X_{i,m}; V_i] \leq d[X_{i,m}; X_{i,m}] + \frac{1}{2}(\mathbb{H}[V_i] - \mathbb{H}[X_{i,m}]). \quad (12.17)$$

Combining (12.13), (12.14) and (12.15) with (12.16) and (12.17) (the latter two summed over i), we get

$$\begin{aligned} \frac{1}{\eta} \mathcal{J} &\leq \sum_{i,j=1}^m d[X_{i,j}; X_{i,j}] + \sum_{i=1}^m (\mathbb{H}[V_i] - \mathbb{H}[X_{i,m}]) \\ &= m \sum_{i=1}^m d[X_i; X_i] + \sum_{i=1}^m \mathbb{H}[V_i] - \sum_{i=1}^m \mathbb{H}[X_i]. \end{aligned} \quad (12.18)$$

By Lemma 12.9 (with f taking each j to the index j' such that $X_{i,j}$ is a copy of $X_{j'}$) we obtain the bound

$$\mathbb{H}[V_i] \leq \mathbb{H}\left[\sum_{j=1}^m X_j\right] + \sum_{j=1}^m d[X_{i,j}; X_{i,j}].$$

Finally, summing over i and using $D[X_{[m]}] = k$ gives

$$\begin{aligned} \sum_{i=1}^m \mathbb{H}[V_i] - \sum_{i=1}^m \mathbb{H}[X_i] &\leq \sum_{i,j=1}^m d[X_{i,j}; X_{i,j}] + mk \\ &= m \sum_{i=1}^m d[X_i; X_i] + mk, \end{aligned}$$

where in the second step we used the permutation hypothesis. Combining this with (12.18) gives the

$$\mathcal{J} \leq 2\eta m \left(\sum_{i=1}^m d[X_i; X_i] \right) + mk.$$

The claim (12.12) is now immediate from Lemma 12.18. \square

12.7 Endgame

Now let $m \geq 2$, let G be an m -torsion abelian group, and let $(X_i)_{1 \leq i \leq m}$ be a τ -minimizer.

Definition 12.38 (Additional random variables). *By a slight abuse of notation, we identify $\mathbb{Z}/m\mathbb{Z}$ and $\{1, \dots, m\}$ in the obvious way, and let $Y_{i,j}$ be an independent copy of X_i for $i, j \in \mathbb{Z}/m\mathbb{Z}$. Then also define:*

$$W := \sum_{i,j \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j}$$

and

$$Z_1 := \sum_{i,j \in \mathbb{Z}/m\mathbb{Z}} iY_{i,j}, \quad Z_2 := \sum_{i,j \in \mathbb{Z}/m\mathbb{Z}} jY_{i,j}, \quad Z_3 := \sum_{i,j \in \mathbb{Z}/m\mathbb{Z}} (-i-j)Y_{i,j}.$$

The addition $(-i-j)$ takes place over $\mathbb{Z}/m\mathbb{Z}$. Note that, because we are assuming G is m -torsion, it is well-defined to multiply elements of G by elements of $\mathbb{Z}/m\mathbb{Z}$. We will also define for $i, j, r \in \mathbb{Z}/m\mathbb{Z}$ the variables

$$P_i := \sum_{j \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j}, \quad Q_j := \sum_{i \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j}, \quad R_r := \sum_{\substack{i,j \in \mathbb{Z}/m\mathbb{Z} \\ i+j=-r}} Y_{i,j}. \quad (12.19)$$

Lemma 12.39 (Zero-sum). *We have*

$$Z_1 + Z_2 + Z_3 = 0 \quad (12.20)$$

Proof. Clear from definition. \square

Proposition 12.40 (Mutual information bound). *We have*

$$\mathbb{I}[Z_1 : Z_2 | W], \quad \mathbb{I}[Z_2 : Z_3 | W], \quad \mathbb{I}[Z_1 : Z_3 | W] \leq t$$

where

$$t := m(4m+1)\eta k. \quad (12.21)$$

Proof. We analyze these variables by Proposition 12.37 in several different ways. In the first application, take $X_{i,j} = Y_{i,j}$. Note that each column $(X_{i,j})_{i=1}^m$ is indeed a permutation of X_1, \dots, X_m ; in fact, the trivial permutation. Note also that for each $i \in \mathbb{Z}/m\mathbb{Z}$, the row sum is

$$\sum_{j=1}^m X_{i,j} = \sum_{j \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j} = P_i$$

and for each $j \in \mathbb{Z}/m\mathbb{Z}$, the column sum is

$$\sum_{i=1}^m X_{i,j} = \sum_{i \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j} = Q_j.$$

Finally note that $\sum_{i,j=1}^m X_{i,j} = W$. From Proposition 12.37 we then have

$$\mathbb{I}[(P_i)_{i \in \mathbb{Z}/m\mathbb{Z}} : (Q_j)_{j \in \mathbb{Z}/m\mathbb{Z}} | W] \leq t,$$

with t as in (12.21). Since Z_1 is a function of $(P_i)_{i \in \mathbb{Z}/m\mathbb{Z}}$ by (12.19), and similarly Z_2 is a function of $(Q_j)_{j \in \mathbb{Z}/m\mathbb{Z}}$, it follows immediately from Lemma 12.4 that

$$\mathbb{I}[Z_1 : Z_2 | W] \leq t.$$

In the second application of Proposition 12.37, we instead consider $X'_{i,j} = Y_{i-j,j}$. Again, for each fixed j , the tuple $(X'_{i,j})_{i=1}^m$ is a permutation of X_1, \dots, X_m . This time the row sums for $i \in \{1, \dots, m\}$ are

$$\sum_{j=1}^m X'_{i,j} = \sum_{j \in \mathbb{Z}/m\mathbb{Z}} Y_{i-j,j} = R_{-i}.$$

Similarly, the column sums for $j \in \{1, \dots, m\}$ are

$$\sum_{i=1}^m X'_{i,j} = \sum_{i \in \mathbb{Z}/m\mathbb{Z}} Y_{i-j,j} = Q_j.$$

As before, $\sum_{i,j=1}^m X'_{i,j} = W$. Hence, using (12.19) and Lemma 12.4 again, Proposition 12.37 tells us

$$\mathbb{I}[Z_3 : Z_2 \mid W] \leq \mathbb{I}[(R_i)_{i \in \mathbb{Z}/m\mathbb{Z}} : (Q_j)_{j \in \mathbb{Z}/m\mathbb{Z}} \mid W] \leq t.$$

In the third application¹ of Proposition 12.37, take $X''_{i,j} = Y_{i,j-i}$. The column and row sums are respectively

$$\sum_{j=1}^m X''_{i,j} = \sum_{j \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j-i} = P_i$$

and

$$\sum_{i=1}^m X''_{i,j} = \sum_{i \in \mathbb{Z}/m\mathbb{Z}} Y_{i,j-i} = R_{-j}.$$

Hence, Proposition 12.37 and Lemma 12.4 give

$$\mathbb{I}[Z_1 : Z_3 \mid W] \leq \mathbb{I}[(P_i)_{i \in \mathbb{Z}/m\mathbb{Z}} : (R_j)_{j \in \mathbb{Z}/m\mathbb{Z}} \mid W] \leq t,$$

which completes the proof. \square

Lemma 12.41 (Entropy of W). *We have $\mathbb{H}[W] \leq (2m-1)k + \frac{1}{m} \sum_{i=1}^m \mathbb{H}[X_i]$.*

Proof. Without loss of generality, we may take X_1, \dots, X_m to be independent. Write $S = \sum_{i=1}^m X_i$. Note that for each $j \in \mathbb{Z}/m\mathbb{Z}$, the sum Q_j from (12.19) above has the same distribution as S . By Lemma 12.6 we have

$$\begin{aligned} \mathbb{H}[W] &= \mathbb{H}\left[\sum_{j \in \mathbb{Z}/m\mathbb{Z}} Q_j\right] \leq \mathbb{H}[S] + \sum_{j=2}^m (\mathbb{H}[Q_1 + Q_j] - \mathbb{H}[S]) \\ &= \mathbb{H}[S] + (m-1)d[S; -S]. \end{aligned}$$

By Lemma 12.20, we have

$$d[S; -S] \leq 2k \tag{12.22}$$

and hence

$$\mathbb{H}[W] \leq 2k(m-1) + \mathbb{H}[S].$$

From Definition 12.12 we have

$$\mathbb{H}[S] = k + \frac{1}{m} \sum_{i=1}^m \mathbb{H}[X_i], \tag{12.23}$$

and the claim follows. \square

¹In fact, by permuting the variables $(Y_{i,j})_{i,j \in \mathbb{Z}/m\mathbb{Z}}$, one can see that the random variables (W, Z_1, Z_2) and (W, Z_1, Z_3) have the same distribution, so this is in some sense identical to – and can be deduced from – the first application.

Lemma 12.42 (Entropy of Z_2). *We have $\mathbb{H}[Z_2] \leq (8m^2 - 16m + 1)k + \frac{1}{m} \sum_{i=1}^m \mathbb{H}[X_i]$.*

Proof. We observe

$$\mathbb{H}[Z_2] = \mathbb{H}\left[\sum_{j \in \mathbb{Z}/m\mathbb{Z}} jQ_j\right].$$

Applying Lemma 12.6 one has

$$\mathbb{H}[Z_2] \leq \sum_{i=2}^{m-1} \mathbb{H}[Q_1 + iQ_i] - (m-2)\mathbb{H}[S].$$

Using Lemma 12.11 and (12.22) we get

$$\begin{aligned} \mathbb{H}[Z_2] &\leq \mathbb{H}[S] + 4m(m-2)d[S; -S] \\ &\leq \mathbb{H}[S] + 8m(m-2)k. \end{aligned}$$

Applying (12.23) gives the claim. \square

Lemma 12.43 (Mutual information bound). *We have $\mathbb{I}[W : Z_2] \leq 2(m-1)k$.*

Proof. From Lemma 2.16 we have $\mathbb{I}[W : Z_2] = \mathbb{H}[W] - \mathbb{H}[W|Z_2]$, and since $Z_2 = \sum_{j=1}^{m-1} jQ_j$ and $W = \sum_{j=1}^m Q_j$,

$$\mathbb{H}[W|Z_2] \geq \mathbb{H}[W | Q_1, \dots, Q_{m-1}] = \mathbb{H}[Q_m] = \mathbb{H}[S].$$

Hence, by Lemma 12.41,

$$\mathbb{I}[W : Z_2] \leq \mathbb{H}[W] - \mathbb{H}[S] \leq 2(m-1)k,$$

as claimed. \square

Lemma 12.44 (Distance bound). *We have $\sum_{i=1}^m d[X_i; Z_2|W] \leq 4(m^3 - m^2)k$.*

Proof. For each $i \in \{1, \dots, m\}$, using Lemma 12.8 (noting the sum Z_2 contains X_i as a summand) we have

$$d[X_i; Z_2] \leq d[X_i; X_i] + \frac{1}{2}(\mathbb{H}[Z_2] - \mathbb{H}[X_i]) \tag{12.24}$$

and using Lemma 3.24 we have

$$d[X_i; Z_2|W] \leq d[X_i; Z_2] + \frac{1}{2}\mathbb{I}[W : Z_2].$$

Combining with (12.24) and Lemma 12.43 gives

$$d[X_i; Z_2|W] \leq d[X_i; X_i] + \frac{1}{2}(\mathbb{H}[Z_2] - \mathbb{H}[X_i]) + (m-1)k.$$

Summing over i and applying Lemma 12.42 gives

$$\sum_{i=1}^m d[X_i; Z_2|W] \leq \sum_{i=1}^m d[X_i; X_i] + m(8m^2 - 16m + 1)k/2 + m(m-1)k.$$

Finally, applying Lemma 12.18 (and dropping some lower order terms) gives the claim. \square

Lemma 12.45 (Application of BSG). *Let G be an abelian group, let (T_1, T_2, T_3) be a G^3 -valued random variable such that $T_1 + T_2 + T_3 = 0$ holds identically, and write*

$$\delta := \mathbb{I}[T_1 : T_2] + \mathbb{I}[T_1 : T_3] + \mathbb{I}[T_2 : T_3].$$

Let Y_1, \dots, Y_n be some further G -valued random variables and let $\alpha > 0$ be a constant. Then there exists a random variable U such that

$$d[U; U] + \alpha \sum_{i=1}^n d[Y_i; U] \leq \left(2 + \frac{\alpha n}{2}\right) \delta + \alpha \sum_{i=1}^n d[Y_i; T_2]. \quad (12.25)$$

Proof. We apply Lemma 3.23 with $X = T_1$ and $Y = T_2$. Since $T_1 + T_2 = -T_3$, we find that

$$\begin{aligned} \sum_z p_{T_3}(z) d[T_1 \mid T_3 = z; T_2 \mid T_3 = z] \\ \leq 3\mathbb{I}[T_1 : T_2] + 2\mathbb{H}[T_3] - \mathbb{H}[T_1] - \mathbb{H}[T_2] \\ = \mathbb{I}[T_1 : T_2] + \mathbb{I}[T_1 : T_3] + \mathbb{I}[T_2 : T_3] = \delta, \end{aligned} \quad (12.26)$$

where the last line follows from Lemma 2.2 by observing

$$\mathbb{H}[T_1, T_2] = \mathbb{H}[T_1, T_3] = \mathbb{H}[T_2, T_3] = \mathbb{H}[T_1, T_2, T_3]$$

since any two of T_1, T_2, T_3 determine the third.

By (12.26) and the triangle inequality,

$$\sum_z p_{T_3}(z) d[T_2 \mid T_3 = z; T_2 \mid T_3 = z] \leq 2\delta$$

and by Lemma 3.25, for each Y_i ,

$$\begin{aligned} \sum_z p_{T_3}(z) d[Y_i; T_2 \mid T_3 = z] \\ = d[Y_i; T_2 \mid T_3] \leq d[Y_i; T_2] + \frac{1}{2} \mathbb{I}[T_2 : T_3] \leq d[Y_i; T_2] + \frac{\delta}{2}. \end{aligned}$$

Hence,

$$\begin{aligned} \sum_z p_{T_3}(z) \left(d[T_2 \mid T_3 = z; T_2 \mid T_3 = z] + \alpha \sum_{i=1}^n d[Y_i; T_2 \mid T_3 = z] \right) \\ \leq \left(2 + \frac{\alpha n}{2}\right) \delta + \alpha \sum_{i=1}^n d[Y_i; T_2], \end{aligned}$$

and the result follows by setting $U = (T_2 \mid T_3 = z)$ for some z such that the quantity in parentheses on the left-hand side is at most the weighted average value. \square

Proposition 12.46 (Vanishing entropy). *We have $k = 0$.*

Proof. For each value $W = w$, apply Lemma 12.45 (and Lemma 12.39) to

$$T_1 = (Z_1 \mid W = w), \quad T_2 = (Z_2 \mid W = w), \quad T_3 = (Z_3 \mid W = w)$$

with $Y_i = X_i$ and $\alpha = \eta/m$. Write

$$\delta_w := \mathbb{I}[T_1 : T_2] + \mathbb{I}[T_1 : T_3] + \mathbb{I}[T_2 : T_3]$$

for this choice, and note that

$$\begin{aligned}\delta_* &:= \sum_w p_W(w) \delta_w = \mathbb{I}[Z_1 : Z_2 | W] + \mathbb{I}[Z_1 : Z_3 | W] + \mathbb{I}[Z_2 : Z_3 | W] \\ &\leq 3m(4m+1)\eta k\end{aligned}\tag{12.27}$$

by Proposition 12.40. Write U_w for the random variable guaranteed to exist by Lemma 12.45, so that (12.25) gives

$$d[U_w; U_w] \leq \left(2 + \frac{\alpha m}{2}\right) \delta_w + \alpha \sum_{i=1}^m (d[X_i; T_2] - d[X_i; U_w]).\tag{12.28}$$

Let $(U_w)_I$ denote the tuple consisting of the same variable U_w repeated m times. By Lemma 12.19

$$D[(U_w)_I] \leq md[U_w; U_w].\tag{12.29}$$

On the other hand, from Lemma 12.27 one has

$$D[(U_w)_I] \geq k - \eta \sum_{i=1}^m d[X_i; U_w].\tag{12.30}$$

Combining (12.28), (12.29) and (12.30) and averaging over w (with weight $p_W(w)$), and recalling the value $\alpha = \eta/m$, gives

$$m\left(2 + \frac{\eta}{2}\right) \delta_* + \eta \sum_{i=1}^m d[X_i; Z_2 | W] \geq k$$

since the terms $d[X_i; U_w]$ cancel by our choice of α . Substituting in Lemma 12.44 and (12.27), and using the fact that $2 + \frac{\eta}{2} < 3$, we have

$$3m^2(4m+1)\left(2 + \frac{\eta}{2}\right)\eta k + \eta 8(m^3 - m^2)k \geq k.$$

From Definition 12.22 we have we have

$$3m^2(4m+1)\left(2 + \frac{\eta}{2}\right)\eta + \eta 8(m^3 - m^2) < 1$$

and hence $k \leq 0$. The claim now follows from Lemma 12.15. \square

12.8 Wrapping up

Theorem 12.47 (Entropy form of PFR). *Suppose that G is a finite abelian group of torsion m . Suppose that X is a G -valued random variable. Then there exists a subgroup $H \leq G$ such that*

$$d[X; U_H] \leq 64m^3 d[X; X].$$

Proof. Set $X^0 := X$. By Proposition 12.25, there exists a τ -minimizer $X_{[m]} = (X_i)_{1 \leq i \leq m}$. By Proposition 12.46, we have $D[X_{[m]}] = 0$. By Proposition 12.26 and the pigeonhole principle, there exists $1 \leq i \leq m$ such that $d[X_i; X] \leq \frac{2}{\eta} d[X; X]$. By Proposition 12.21, we have $d[X_i; U_H] = 0$ for some subgroup $H \leq G$, hence by Lemma 3.18 we have $d[U_H; X] \leq \frac{2}{\eta} d[X; X]$. The claim then follows from Definition 12.22. \square

Lemma 12.48. *Suppose that G is a finite abelian group of torsion m . If $A \subset G$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by at most $K^{128m^3+1}|A|^{1/2}/|H|^{1/2}$ translates of a subspace H of G with*

$$|H|/|A| \in [K^{-256m^3}, K^{256m^3}]. \quad (12.31)$$

Proof. Repeat the proof of Lemma 7.2, but with Theorem 12.47 in place of Theorem 6.24. Because of the lack of 2-torsion, one has to use the Ruzsa triangle inequality to bound $d[U, U]$ by $2d[U, -U]$, costing an additional factor of 2 in the estimates. \square

Theorem 12.49 (PFR). *Suppose that G is a finite abelian group of torsion m . If $A \subset G$ is non-empty and $|A + A| \leq K|A|$, then A can be covered by at most mK^{256m^3+1} translates of a subspace H of G with $|H| \leq |A|$.*

Proof. Repeat the proof of Theorem 7.3, but with Lemma 12.48 in place of Lemma 7.2. \square

Chapter 13

Further improvement to exponent

13.1 Kullback–Leibler divergence

In the definitions below, G is a set.

Definition 13.1 (Kullback–Leibler divergence). *If X, Y are two G -valued random variables, the Kullback–Leibler divergence is defined as*

$$D_{KL}(X\|Y) := \sum_x \mathbf{P}(X=x) \log \frac{\mathbf{P}(X=x)}{\mathbf{P}(Y=x)}.$$

Lemma 13.2 (Kullback–Leibler divergence of copy). *If X' is a copy of X , and Y' is a copy of Y , then $D_{KL}(X'\|Y') = D_{KL}(X\|Y)$.*

Proof. Clear from definition. \square

Lemma 13.3 (Gibbs inequality). $D_{KL}(X\|Y) \geq 0$.

Proof. Apply Lemma 1.2 on the definition. \square

Lemma 13.4 (Converse Gibbs inequality). *If $D_{KL}(X\|Y) = 0$, then Y is a copy of X .*

Proof. Apply Lemma 1.3. \square

Lemma 13.5 (Convexity of Kullback–Leibler). *If S is a finite set, $\sum_{s \in S} w_s = 1$ for some non-negative w_s , and $\mathbf{P}(X = x) = \sum_{s \in S} w_s \mathbf{P}(X_s = x)$, $\mathbf{P}(Y = x) = \sum_{s \in S} w_s \mathbf{P}(Y_s = x)$ for all x , then*

$$D_{KL}(X\|Y) \leq \sum_{s \in S} w_s D_{KL}(X_s\|Y_s).$$

Proof. For each x , replace $\log \frac{\mathbf{P}(X_s=x)}{\mathbf{P}(Y_s=x)}$ in the definition with $\log \frac{w_s \mathbf{P}(X_s=x)}{w_s \mathbf{P}(Y_s=x)}$ for each s , and apply Lemma 1.2. \square

Lemma 13.6 (Kullback–Leibler and injections). *If $f : G \rightarrow H$ is an injection, then $D_{KL}(f(X)\|f(Y)) = D_{KL}(X\|Y)$.*

Proof. Clear from definition. \square

Now let G be an additive group.

Lemma 13.7 (Kullback–Leibler and sums). *If X, Y, Z are independent G -valued random variables, then*

$$D_{KL}(X + Z \| Y + Z) \leq D_{KL}(X \| Y).$$

Proof. For each z , $D_{KL}(X + z \| Y + z) = D_{KL}(X \| Y)$ by Lemma 13.6. Then apply Lemma 13.5 with $w_z = \mathbf{P}(Z = z)$. \square

Definition 13.8 (Conditional Kullback–Leibler divergence). *If X, Y, Z are random variables, with X, Z defined on the same sample space, we define*

$$D_{KL}(X|Z \| Y) := \sum_z \mathbf{P}(Z = z) D_{KL}((X|Z = z) \| Y).$$

Lemma 13.9 (Kullback–Leibler and conditioning). *If X, Y are independent G -valued random variables, and Z is another random variable defined on the same sample space as X , then*

$$D_{KL}((X|Z) \| Y) = D_{KL}(X \| Y) + \mathbb{H}[X] - \mathbb{H}[X|Z].$$

Proof. Compare the terms correspond to each $x \in G$ on both sides. \square

Lemma 13.10 (Conditional Gibbs inequality). $D_{KL}((X|W) \| Y) \geq 0$.

Proof. Clear from Definition 13.8 and Lemma 13.3. \square

13.2 Rho functionals

Let G be an additive group, and let A be a non-empty subset of G .

Definition 13.11 (Rho minus). *For any G -valued random variable X , we define $\rho^-(X)$ to be the infimum of $D_{KL}(X \| U_A + T)$, where U_A is uniform on A and T ranges over G -valued random variables independent of U_A .*

Definition 13.12 (Rho plus). *For any G -valued random variable X , we define $\rho^+(X) := \rho^-(X) + \mathbb{H}(X) - \mathbb{H}(U_A)$.*

Lemma 13.13 (Rho minus non-negative). *We have $\rho^-(X) \geq 0$.*

Proof. Clear from Lemma 13.10. \square

Lemma 13.14 (Rho minus of subgroup). *If H is a finite subgroup of G , then $\rho^-(U_H) = \log |A| - \log \max_t |A \cap (H + t)|$.*

Proof. For every G -valued random variable T that is independent of Y ,

$$D_{KL}(U_H \| U_A + T) = \sum_{h \in H} \frac{1}{|H|} \log \frac{1/|H|}{\mathbf{P}[U_A + T = h]} \geq -\log(\mathbf{P}[U_A + T \in H]),$$

by Lemma 1.2. Then observe that

$$-\log(\mathbf{P}[U_A + T \in H]) = -\log(\mathbf{P}[U_A \in H - T]) \geq -\log(\max_{t \in G} \mathbf{P}[U_A \in H + t]).$$

This proves \geq .

To get the equality, let $t^* := \arg \max_t |A \cap (H + t)|$ and observe that

$$\rho^-(U_H) \leq D_{KL}(U_H \| U_A + (U_H - t^*)) = \log |A| - \log \max_t |A \cap (H + t)|.$$

\square

Corollary 13.15 (Rho plus of subgroup). *If H is a finite subgroup of G , then $\rho^+(U_H) = \log |H| - \log \max_t |A \cap (H + t)|$.*

Proof. Straightforward by definition and Lemma 13.14. \square

Definition 13.16 (Rho functional). *We define $\rho(X) := (\rho^+(X) + \rho^-(X))/2$.*

Lemma 13.17. *We have $\rho(U_A) = 0$.*

Proof. $\rho^-(U_A) \leq 0$ by the choice $T = 0$. The claim then follows from Lemma 13.13. \square

Lemma 13.18 (Rho of subgroup). *If H is a finite subgroup of G , and $\rho(U_H) \leq r$, then there exists t such that $|A \cap (H + t)| \geq e^{-r} \sqrt{|A||H|}$, and $|H|/|A| \in [e^{-2r}, e^{2r}]$.*

Proof. The first claim is a direct corollary of Lemma 13.14 and Corollary 13.15. To see the second claim, observe that Lemma 13.13 and Corollary 13.15 imply $\rho^-(U_H), \rho^+(U_H) \geq 0$. Therefore

$$|H(U_A) - H(U_H)| = |\rho^+(U_H) - \rho^-(U_H)| \leq \rho^-(U_H) + \rho^+(U_H) = 2\rho(U_H) \leq 2r,$$

which implies the second claim. \square

Lemma 13.19 (Rho invariant). *For any $s \in G$, $\rho(X + s) = \rho(X)$.*

Proof. Observe that by Lemma 13.6,

$$\inf_T D_{KL}(X \| U_A + T) = \inf_T D_{KL}(X + s \| U_A + T + s) = \inf_{T'} D_{KL}(X + s \| U_A + T').$$

\square

Lemma 13.20 (Rho continuous). *$\rho(X)$ depends continuously on the distribution of X .*

Proof. Clear from definition. \square

Lemma 13.21 (Rho and sums). *If X, Y are independent, one has*

$$\rho^-(X + Y) \leq \rho^-(X)$$

$$\rho^+(X + Y) \leq \rho^+(X) + \mathbb{H}[X + Y] - \mathbb{H}[X]$$

and

$$\rho(X + Y) \leq \rho(X) + \frac{1}{2}(\mathbb{H}[X + Y] - \mathbb{H}[X]).$$

Proof. The first inequality follows from Lemma 13.7. The second and third inequalities are direct corollaries of the first. \square

Definition 13.22 (Conditional Rho functional). *We define $\rho(X|Y) := \sum_y \mathbf{P}(Y = y) \rho(X|Y = y)$.*

Lemma 13.23 (Conditional rho and translation). *For any $s \in G$, $\rho(X + s|Y) = \rho(X|Y)$.*

Proof. Direct corollary of Lemma 13.19. \square

Lemma 13.24 (Conditional rho and relabeling). *If f is injective, then $\rho(X|f(Y)) = \rho(X|Y)$.*

Proof. Clear from the definition. \square

Lemma 13.25 (Rho and conditioning). *If X, Z are defined on the same space, one has*

$$\rho^-(X|Z) \leq \rho^-(X) + \mathbb{H}[X] - \mathbb{H}[X|Z]$$

$$\rho^+(X|Z) \leq \rho^+(X)$$

and

$$\rho(X|Z) \leq \rho(X) + \frac{1}{2}(\mathbb{H}[X] - \mathbb{H}[X|Z]).$$

Proof. The first inequality follows from Lemma 13.9. The second and third inequalities are direct corollaries of the first. \square

The following lemmas hold for $G = \mathbb{F}_2^n$.

Lemma 13.26 (Rho and sums, symmetrized). *If X, Y are independent, then*

$$\rho(X+Y) \leq \frac{1}{2}(\rho(X) + \rho(Y) + d[X; Y]).$$

Proof. Apply Lemma 13.21 for (X, Y) and (Y, X) and take their average. \square

Lemma 13.27 (Rho and conditioning, symmetrized). *If X, Y are independent, then*

$$\rho(X|X+Y) \leq \frac{1}{2}(\rho(X) + \rho(Y) + d[X; Y]).$$

Proof. First apply Lemma 13.25 to get $\rho(X|X+Y) \leq \rho(X) + \frac{1}{2}(\mathbb{H}[X+Y] - \mathbb{H}[Y])$, and $\rho(Y|X+Y) \leq \rho(Y) + \frac{1}{2}(\mathbb{H}[X+Y] - \mathbb{H}[X])$. Then apply Lemma 13.19 to get $\rho(Y|X+Y) = \rho(X|X+Y)$ and take the average of the two inequalities. \square

13.3 Studying a minimizer

Set $\eta < 1/8$. In this section, consider $G = \mathbb{F}_2^n$.

Definition 13.28. *Given G -valued random variables X, Y , define*

$$\phi[X; Y] := d[X; Y] + \eta(\rho(X) + \rho(Y))$$

and define a ϕ -minimizer to be a pair of random variables X, Y which minimizes $\phi[X; Y]$.

Lemma 13.29 (ϕ -minimizers exist). *There exists a ϕ -minimizer.*

Proof. Clear from compactness. \square

Let (X_1, X_2) be a ϕ -minimizer, and \tilde{X}_1, \tilde{X}_2 be independent copies of X_1, X_2 respectively. Similar to the original proof we define

$$I_1 := I[X_1 + X_2 : \tilde{X}_1 + X_2 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2], I_2 := \mathbb{I}[X_1 + X_2 : X_1 + \tilde{X}_1 | X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2].$$

First we need the ϕ -minimizer variants of Lemma 6.12 and Lemma 6.16.

Lemma 13.30. $I_1 \leq 2\eta d[X_1; X_2]$

Proof. Similar to Lemma 6.12: get upper bounds for $d[X_1; X_2]$ by $\phi[X_1; X_2] \leq \phi[X_1 + X_2; \tilde{X}_1 + \tilde{X}_2]$ and $\phi[X_1; X_2] \leq \phi[X_1|X_1 + X_2; \tilde{X}_2|\tilde{X}_1 + \tilde{X}_2]$, and then apply Lemma 6.8 to get an upper bound for I_1 . \square

Lemma 13.31. $d[X_1; X_1] + d[X_2; X_2] = 2d[X_1; X_2] + (I_2 - I_1)$.

Proof. Compare Lemma 6.8 with the identity obtained from applying Corollary 5.3 on $(X_1, \tilde{X}_1, X_2, \tilde{X}_2)$. \square

Lemma 13.32. $I_2 \leq 2\eta d[X_1; X_2] + \frac{\eta}{1-\eta}(2\eta d[X_1; X_2] - I_1)$.

Proof. First of all, by $\phi[X_1; X_2] \leq \phi[X_1 + \tilde{X}_1; X_2 + \tilde{X}_2]$, $\phi[X_1; X_2] \leq \phi[X_1|X_1 + \tilde{X}_1; X_2|X_2 + \tilde{X}_2]$, and the fibring identity obtained by applying Corollary 5.3 on $(X_1, X_2, \tilde{X}_1, \tilde{X}_2)$, we have $I_2 \leq \eta(d[X_1; X_1] + d[X_2; X_2])$. Then apply Lemma 13.31 to get $I_2 \leq 2\eta d[X_1; X_2] + \eta(I_2 - I_1)$, and rearrange. \square

Next we need some inequalities for the endgame.

Lemma 13.33. If G -valued random variables T_1, T_2, T_3 satisfy $T_1 + T_2 + T_3 = 0$, then

$$d[X_1; X_2] \leq 3\mathbb{I}[T_1 : T_2] + (2\mathbb{H}[T_3] - \mathbb{H}[T_1] - \mathbb{H}[T_2]) + \eta(\rho(T_1|T_3) + \rho(T_2|T_3) - \rho(X_1) - \rho(X_2)).$$

Proof. Conditioned on every $T_3 = t$, $d[X_1; X_2] \leq d[T_1|T_3 = t; T_2|T_3 = t] + \eta(\rho(T_1|T_3 = t) + \rho(T_2|T_3 = t) - \rho(X_1) - \rho(X_2))$ by Definition 13.28. Then take the weighted average with weight $\mathbf{P}(T_3 = t)$ and then apply Lemma 3.23 to bound the RHS. \square

Lemma 13.34. If G -valued random variables T_1, T_2, T_3 satisfy $T_1 + T_2 + T_3 = 0$, then

$$d[X_1; X_2] \leq \sum_{1 \leq i < j \leq 3} \mathbb{I}[T_i : T_j] + \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j) + \rho(T_j|T_i) - \rho(X_1) - \rho(X_2))$$

Proof. Take the average of Lemma 13.33 over all 6 permutations of T_1, T_2, T_3 . \square

Lemma 13.35. For independent random variables Y_1, Y_2, Y_3, Y_4 over G , define $S := Y_1 + Y_2 + Y_3 + Y_4$, $T_1 := Y_1 + Y_2$, $T_2 := Y_1 + Y_3$. Then

$$\rho(T_1|T_2, S) + \rho(T_2|T_1, S) - \frac{1}{2} \sum_i \rho(Y_i) \leq \frac{1}{2}(d[Y_1; Y_2] + d[Y_3; Y_4] + d[Y_1; Y_3] + d[Y_2; Y_4]).$$

Proof. Let $T'_1 := Y_3 + Y_4$, $T'_2 := Y_2 + Y_4$. First note that

$$\begin{aligned} \rho(T_1|T_2, S) &\leq \rho(T_1|S) + \frac{1}{2}\mathbb{I}(T_1 : T_2 | S) \\ &\leq \frac{1}{2}(\rho(T_1) + \rho(T'_1)) + \frac{1}{2}(d[T_1; T'_1] + \mathbb{I}(T_1 : T_2 | S)) \\ &\leq \frac{1}{4} \sum_i \rho(Y_i) + \frac{1}{4}(d[Y_1; Y_2] + d[Y_3; Y_4]) + \frac{1}{2}(d[T_1; T'_1] + \mathbb{I}(T_1 : T_2 | S)). \end{aligned}$$

by Lemma 13.25, Lemma 13.27, Lemma 13.26 respectively. On the other hand, observe that

$$\begin{aligned} \rho(T_1|T_2, S) &= \rho(Y_1 + Y_2|T_2, T'_2) \\ &\leq \frac{1}{2}(\rho(Y_1|T_2) + \rho(Y_2|T'_2)) + \frac{1}{2}(d[Y_1|T_2; Y_2|T'_2]) \\ &\leq \frac{1}{4} \sum_i \rho(Y_i) + \frac{1}{4}(d[Y_1; Y_3] + d[Y_2; Y_4]) + \frac{1}{2}(d[Y_1|T_2; Y_2|T'_2]). \end{aligned}$$

by Lemma 13.24, Lemma 13.26, Lemma 13.27 respectively. By replacing (Y_1, Y_2, Y_3, Y_4) with (Y_1, Y_3, Y_2, Y_4) in the above inequalities, one has

$$\rho(T_2|T_1, S) \leq \frac{1}{4} \sum_i \rho(Y_i) + \frac{1}{4}(d[Y_1; Y_3] + d[Y_2; Y_4]) + \frac{1}{2}(d[T_2; T'_2] + \mathbb{I}(T_1 : T_2 | S))$$

and

$$\rho(T_2|T_1, S) \leq \frac{1}{4} \sum_i \rho(Y_i) + \frac{1}{4}(d[Y_1; Y_2] + d[Y_3; Y_4]) + \frac{1}{2}(d[Y_1|T_1; Y_3|T'_1]).$$

Finally, take the sum of all four inequalities, apply Corollary 5.3 on (Y_1, Y_2, Y_3, Y_4) and (Y_1, Y_3, Y_2, Y_4) to rewrite the sum of last terms in the four inequalities, and divide the result by 2. \square

Lemma 13.36. *For independent random variables Y_1, Y_2, Y_3, Y_4 over G , define $T_1 := Y_1 + Y_2, T_2 := Y_1 + Y_3, T_3 := Y_2 + Y_3$ and $S := Y_1 + Y_2 + Y_3 + Y_4$. Then*

$$\sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j, S) + \rho(T_j|T_i, S)) - \frac{1}{2} \sum_i \rho(Y_i) \leq \sum_{1 \leq i < j \leq 4} d[Y_i; Y_j]$$

Proof. Apply Lemma 13.35 on (Y_i, Y_j, Y_k, Y_4) for $(i, j, k) = (1, 2, 3), (2, 3, 1), (1, 3, 2)$, and take the sum. \square

Proposition 13.37. *If X_1, X_2 is a ϕ -minimizer, then $d[X_1; X_2] = 0$.*

Proof. Consider $T_1 := X_1 + X_2, T_2 := X_1 + \tilde{X}_1, T_3 := \tilde{X}_1 + X_2$, and $S = X_1 + X_2 + \tilde{X}_1 + \tilde{X}_2$. Note that $T_1 + T_2 + T_3 = 0$. First apply Lemma 13.34 on (T_1, T_2, T_3) when conditioned on S to get

$$\begin{aligned} d[X_1; X_2] &\leq \sum_{1 \leq i < j \leq 3} \mathbb{I}[T_i : T_j | S] + \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j, S) + \rho(T_j|T_i, S) - \rho(X_1) - \rho(X_2)) \\ &= (I_1 + 2I_2) + \frac{\eta}{3} \sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j, S) + \rho(T_j|T_i, S) - \rho(X_1) - \rho(X_2)). \end{aligned} \quad (13.1)$$

Then apply Lemma 13.36 on $(X_1, X_2, \tilde{X}_1, \tilde{X}_2)$ and get

$$\sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j, S) + \rho(T_j|T_i, S) - \rho(X_1) - \rho(X_2)) \leq (4d[X_1; X_2] + d[X_1; X_2] + d[X_2; X_1]) = 6d[X_1; X_2] + (I_2 - I_1)$$

by Lemma 13.31. Plug in the inequality above to (13.1), we get

$$d[X_1; X_2] \leq (I_1 + 2I_2) + 2\eta d[X_1; X_2] + \frac{\eta}{3}(I_2 - I_1).$$

By Lemma 13.32 we can conclude that

$$d[X_1; X_2] \leq 8\eta d[X_1; X_2] - \frac{3 - 10\eta}{3 - 3\eta} (2\eta d[X_1; X_2] - I_1).$$

Finally by Lemma 13.30 and $\eta < 1$ we get that the second term is ≤ 0 , and thus $d[X_1; X_2] \leq 8\eta d[X_1; X_2]$. By the choice $\eta < 1/8$ and the non-negativity of d we have $d[X_1; X_2] = 0$. \square

Proposition 13.38. *For any random variables Y_1, Y_2 , there exist a subgroup H such that*

$$2\rho(U_H) \leq \rho(Y_1) + \rho(Y_2) + 8d[Y_1; Y_2].$$

Proof. Let X_1, X_2 be a ϕ -minimizer. By Proposition 13.37 $d[X_1; X_2] = 0$, which by Definition 13.28 implies $\rho(X_1) + \rho(X_2) \leq \rho(Y_1) + \rho(Y_2) + \frac{1}{\eta}d[Y_1; Y_2]$ for every $\eta < 1/8$. Take the limit at $\eta = 1/8$ to get $\rho(X_1) + \rho(X_2) \leq \rho(Y_1) + \rho(Y_2) + 8d[Y_1; Y_2]$. By Lemma 3.18 and Lemma 3.15 we have $d[X_1; X_1] = d[X_2; X_2] = 0$, and by Lemma 4.4 there are $H_1 := \text{Sym}[X_1], H_2 := \text{Sym}[X_2]$ such that $X_1 = U_{H_1} + x_1$ and $X_2 = U_{H_2} + x_2$ for some x_2 . By Lemma 13.19 we get $\rho(U_{H_1}) + \rho(U_{H_2}) \leq \rho(Y_1) + \rho(Y_2) + 8d[Y_1; Y_2]$, and thus the claim holds for $H = H_1$ or $H = H_2$. \square

Corollary 13.39. *If $|A + A| \leq K|A|$, then there exists a subgroup H and $t \in G$ such that $|A \cap (H + t)| \geq K^{-4} \sqrt{|A||H|}$, and $|H|/|A| \in [K^{-8}, K^8]$.*

Proof. Apply Proposition 13.38 on U_A, U_A to get a subspace such that $2\rho(U_H) \leq 2\rho(U_A) + 8d[U_A; U_A]$. Recall that $d[U_A; U_A] \leq \log K$ as proved in Lemma 7.2, and $\rho(U_A) = 0$ by Lemma 13.17. Therefore $\rho(U_H) \leq 4 \log(K)$. The claim then follows from Lemma 13.18. \square

Corollary 13.40. *If $|A + A| \leq K|A|$, then there exist a subgroup H and a subset c of G with $A \subseteq c + H$, such that $|c| \leq K^5|A|^{1/2}/|H|^{1/2}$ and $|H|/|A| \in [K^{-8}, K^8]$.*

Proof. Apply Corollary 13.39 and Lemma 7.1 to get the result, as in the proof of Lemma 7.2. \square

Theorem 13.41 (PFR with $C = 9$). *If $A \subset \mathbf{F}_2^n$ is finite non-empty with $|A + A| \leq K|A|$, then there exists a subgroup H of \mathbf{F}_2^n with $|H| \leq |A|$ such that A can be covered by at most $2K^9$ translates of H .*

Proof. Given Corollary 13.40, the proof is the same as that of Theorem 7.3. \square