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Chapter 1

Applications of Jensen’s
inequality

In this chapter, h denotes the function h(z) := zlog 1 for z € [0,1].

Lemma 1.1 (Concavity). h is strictly concave on [0,00).

Proof. Check that h’ is strictly monotone decreasing. O
Lemma 1.2 (log sum inequality). If S is a finite set, and ag, b, are non-negative for s € S,

then
§ s E SES s
Qg 1Og7 > ( a ) log ﬁ,
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with the convention 0log 2 3 =0 for any b >0 and Olog% = o0 for any a > 0.

Proof. Let B := > segbs- Apply Jensen and to show that > seS % —S) >
h( s, O
Lemma 1.3 (converse log sum). If equality holds in , then ag, =1 - b, for every

s € S, for some constant r € R.

Proof. By the fact that h is strictly concave and the equality condition of Jensen. O



Chapter 2

Shannon entropy inequalities

Random variables in this paper are measurable maps X : Q — S from a probability space
Q) to a measurable space S, and called S-valued random variables. In many cases we will
assume that singletons in S are measurable. Often we will restrict further to the case
when S is finite with the discrete o-algebra, which of course implies that S has measurable
singletons.

Definition 2.1 (Entropy). If X is an S-valued random variable, the entropy H[X] of X is
defined

H[X] ==Y P[X = 2]log PX =]
ses

with the convention that Olog% =0.

Lemma 2.2 (Entropy and relabeling).

(i) If X :Q— S and Y : Q = T are random variables, and Y = f(X) for some injection
f:8—=T, then HX] = H[Y].

(i) If X : Q— S and Y : Q — T are random variables, and Y = f(X) and X = g(Y) for
some functions f: S =T, g: T — S, then HX] = H[Y].

Proof. Expand out both entropies and rearrange. O
Lemma 2.3 (Jensen bound). If X is an S-valued random variable, then H[X] <log|S|.

Proof.

This is a direct consequence of and Jensen’s inequality. O

Definition 2.4 (Uniform distribution). If H is a subset of S, an S-random variable X is
said to be uniformly distributed on H if P[X = s] = 1/|H| for s € X and P[X =] =0
otherwise.

Lemma 2.5 (Uniform distributions exist). Given a finite non-empty subset H of a set S,
there exists a random variable X (on some probability space) that is uniformly distributed

on H.

Proof. Direct construction. O



Lemma 2.6 (Entropy of uniform random variable). If X is S-valued random variable, then
H[X] = log|S| if and only if X is uniformly distributed on S.

Proof.
Direct computation in one direction. Converse direction needs the strict Jensen inequality

Lemma 2.7 (Entropy of uniform random variable, IT). If X is uniformly distributed on H,
then, then H[X] = log |H|.

Proof. Direct computation. O

Lemma 2.8 (Bounded entropy implies concentration). If X is an S-valued random variable,
then there exists s € S such that P[X = s] > exp(—H[X]).

Proof. We have

1 1
P[X = s]log ————— > minlog ————
=2 FIX = s]log P[X = 5] = se5 °P[X =
seS

and the claim follows. O
We use X, Y to denote the pair w — (X(w),Y (w)).

Lemma 2.9 (Commutativity and associativity of joint entropy). If X : @ — S, YV : Q —
T, and Z : Q — U are random variables, then HX,Y] = H[Y,X] and H[X,(Y,Z)] =
H[(X,Y), Z].

Proof. Set up an injection from (X,Y) to (Y, X) and use for the first claim.

Similarly for the second claim. O

Definition 2.10 (Conditioned event). If X : Q — S is an S-valued random variable and E
is an event in Q, then the conditioned event (X|E) is defined to be the same random variable
as X, but now the ambient probability measure has been conditioned to E.

Note: it may happen that E has zero measure. In which case, the ambient probability
measure should be replaced with a zero measure. (In our formalization we achieve this
by working with arbitrary measures, and normalizing them to be probability measures if
possible, else using the zero measure. Conditioning is also formalized using existing Mathlib
definitions.)

Definition 2.11 (Conditional entropy). If X : @ — S andY : Q@ — T are random variables,
the conditional entropy H[X|Y] is defined as

HIX[Y]:= ) Py = yH(X]Y = y)].
yey

Lemma 2.12 (Conditional entropy and relabeling). If X : Q — S, YV : Q — T, and
Z : Q) — U are random variables, andY = f(X, Z) almost surely for some map f : SxU — T
that is injective for each fized U, then H[X|Z] = H[Y|Z].

Similarly, if g : T — U is injective, then H[X|g(Y)] = HX|Y].

Proof. For the first part, use Definition 2.1 and then . The second part is a

direct computation. O



Lemma 2.13 (Chain rule). If X : Q@ = S and Y : Q — T are random variables, then
H[X,Y] = H[Y] + H[X]Y].
Proof. Direct computation. O

Lemma 2.14 (Conditional chain rule). If X : Q = S, Y : Q =T, Z: Q — U are random
variables, then
H[X,Y|Z] = H[Y|Z] + H[X|Y, Z].

Proof. For each z € U, we can apply to the random variables (X|Z = z) and
(Y|Z = z) to obtain

H(X|Z = 2),(Y|Z = 2)] = H[Y|Z = 2] + H[(X|Z = 2)|(Y|Z = 2)].

Now multiply by P[Z = 2] and sum. Some helper lemmas may be needed to get to the
form above. This sort of “average over conditioning” argument to get conditional entropy
inequalities from unconditional ones is commonly used in this paper. O

Definition 2.15 (Mutual information). If X : @ — S, Y : Q — T are random variables,
then
I[X :Y]:=H[X]+HY]-HX,Y]

Lemma 2.16 (Alternative formulae for mutual information). With notation as above, we
have
I[X:Y]=10[Y: X]

IX : Y] = H[X] — H[X|Y]

I[X : Y] = H[Y] — H[Y|X]
Proof. Immediate from Lemmas @, . O
Lemma 2.17 (Nonnegativity of mutual information). We have I[X : Y] > 0.
Proof.

An application of jensen’s inequality and and ?77. O
Corollary 2.18 (Subadditivity). With notation as above, we have H[X,Y] < H[X]+ H[Y].

Proof. Use . O
<

Corollary 2.19 (Conditioning reduces entropy). With notation as above, we have H[X|Y]
H[X].

Proof. Combine lLemma 2.1?| with lLemma 2.1d.

O

Corollary 2.20 (Submodularity). With three random variables X, Y, Z, one has H[X|Y, Z] <
H[X|Z].

Proof. Apply the “averaging over conditioning” argument to Corollary 2.19. O

Corollary 2.21 (Alternate form of submodularity). With three random variables X,Y, Z,
one has
H[X,Y,Z]+ H[Z] < H[X, Z] + H[Y, Z].

Proof. Apply borollary 2.2d and ILemma 2.13. O




Definition 2.22 (Independent random variables). Two random variables X : Q@ — S and
Y : Q — T are independent if the law of (X,Y) is the product of the law of X and the law
of Y. Similarly for more than two variables.

Lemma 2.23 (Vanishing of mutual information). If X,Y are random variables, then 1[X :
Y] =0 if and only if X,Y are independent.

Proof.
An application of the equality case of Jensen’s inequality and . O

Corollary 2.24 (Additivity of entropy). If X,Y are random variables, then H[X,Y] =
H[X] 4+ H[Y] if and only if X, Y are independent.

Proof. Direct from . O

Definition 2.25 (Conditional mutual information). If X,Y, Z are random variables, with
Z U-valued, then

X :Y|Z] =Y PlZ=2(X|Z=2):(Y|Z=2).

zeU

Lemma 2.26 (Alternate formula for conditional mutual information). We have
X :Y|Z] := H[X|Z] + H[Y|Z] - H[X,Y|Z]

and

I[X:Y|Z] := H[X|Z] — HIX|Y, Z].
Proof. Routine computation. O

Lemma 2.27 (Nonnegativity of conditional mutual information). If X, Y, Z are random
variables, then I[X : Y|Z] > 0.

Proof. Use lDeﬁnition 2.25| and k}orollary 2.2d. O

Definition 2.28 (Conditionally independent random variables). Two random variables X :
Q= SandY : Q = T are conditionally independent relative to another random variable
Z:Q = UifPX =sANY =tZ =u] = P[X = s|Z =uP[Y =tZ = u] for all
seSteT,uelU. (Wewon't need conditional independence for more variables than this.)

Lemma 2.29 (Vanishing conditional mutual information). If X, Y, Z are random variables,
then I[X : Y|Z] =0 iff X, Y are conditionally independent over Z.

Proof. Immediate from lLemma 2.214 and [Deﬁnition 2.2&. O

Corollary 2.30 (Entropy of conditionally independent variables). If X, Y are conditionally
independent over Z, then

HIX,Y, Z] = H[X, Z] + H]Y, Z] — H[Z].

Proof. Immediate from lLemma 2.2d and t[‘emma 2.2d. O




Chapter 3

Entropic Ruzsa calculus

In this section G will be a finite additive group. (May eventually want to generalize to
infinite G.)

Lemma 3.1 (Negation preserves entropy). If X is G-valued, then H—X] = H[X].

Proof. Immediate from . O

Lemma 3.2 (Shearing preserves entropy). If X,Y are G-valued, then HX+Y|Y] = HX|Y]
and H[X +Y,Y] = H[X, Y].

Proof. Immediate from lLemma 2.lj and tLemma 2.131. O

Lemma 3.3 (Lower bound of sumset). If X, Y are G-valued random variables on 2, we
have
max(H[X],H[Y]) —I[X : Y] <H[X +Y].

Proof. By [Corollary 2.19, @, , @ we have
HX +Y]>H[X +Y|Y] =H[X|Y] =HX] —[X :Y]
and similarly with the roles of X,Y reversed, giving the claim. O

Corollary 3.4 (Conditional lower bound on sumset). If X, Y are G-valued random variables
on Q and Z is another random variable on Q) then

max(H[X|Z], H[Y|Z]) — I[X : Y|Z] < H[X + Y]|Z],

Proof. This follows from by conditioning to Z = z and summing over z (weighted
by P[Z = z]). O

Corollary 3.5 (Independent lower bound on sumset). If X, Y are independent G-valued
random variables, then
max(H[X], H[Y]) < H[X + Y].

Proof.
Combine lLemma 3.3 with lLemma 2.25{. O

One random variable is said to be a copy of another if they have the same distribution.



Lemma 3.6 (Copy preserves entropy). If X’ is a copy of X then H[X'] = H[X].

Proof. Immediate from . O

Lemma 3.7 (Existence of independent copies). Let X, : Q; — S, be random variables for
1=1,....k. Then if one gives Hle S, the product measure of the laws of X;, the coordinate

functions (a:j)?:l = xz; are jointly independent random wvariables which are copies of the
Xy, X

Proof. Explicit computation. O

Definition 3.8 (Ruzsa distance). Let X,Y be G-valued random variables (not necessarily
on the same sample space). The Ruzsa distance d[X;Y] between X and Y is defined to be

d[X;Y] = H[X —Y’] — H[X']/2 — H[Y"]/2

where X' )Y are (the canonical) independent copies of X, Y from .

Lemma 3.9 (Distance from zero). If X is a G-valued random variable and 0 is the random
variable taking the value 0 everywhere then

d[X;0] = H(X)/2.
Proof. This is an immediate consequence of the definitions and X —0 = X and H(0) =0. O

Lemma 3.10 (Copy preserves Ruzsa distance). If X', Y’ are copies of X,Y respectively
then d[X";Y’] = d[X;Y].

Proof. Immediate from Definitions @ and . O

Lemma 3.11 (Ruzsa distance in independent case). If X,Y are independent G-random
variables then
dX;Y]:=H[X —Y] - H[X]/2 — H[Y]/2.

Proof. Immediate from and Lemmas @7 @ O

Lemma 3.12 (Distance symmetric). If X,Y are G-valued random variables, then

d[X;Y] = d[Y; X].

Proof. Immediate from lLemma 31] and [Deﬁnition 3.&. [

Lemma 3.13 (Distance controls entropy difference). If X, Y are G-valued random variables,
then
HIX] — H[Y]| < 24[X; Y],

Proof. Immediate from borollary 3.d and lDeﬁnition 3.d, and also . O

Lemma 3.14 (Distance controls entropy growth). If X, Y are independent G-valued random
variables, then

H[X — Y] — H[X], H[X — Y] — H[Y] < 2d[X;Y].

Proof. Immediate from borollary 3.3 and lDeﬁnition S.Ei and also . O




Lemma 3.15 (Distance nonnegative). If X,Y are G-valued random variables, then
d[X;Y] > 0.

Proof. Immediate from . O

Lemma 3.16 (Projection entropy and distance). If G is an additive group and X is a
G-valued random variable and H < G is a finite subgroup then, with m# : G — G/H the
natural homomorphism we have (where Uy is uniform on H)

H(r (X)) < 2d[X; Up).

Proof. WLOG, we make X, U independent () Now by Lemmas , @, @

HX = Upln(X)) = H(X = Uy|X) = H(Ug)
H(X — Uy[n(X)) <log|H| =H(Ug)

By

H(X —Uy) = H(m(X)) + HX — Ug|r(X)) = H(m(X)) + H{Ug)
and therefore
H(Uy) — HX).

dIX; Uy] = H(r(X)) + =12

Furthermore by

[H(X) — HU)|

dlX;Uyl > 5
Adding these inequalities gives the result. O

Lemma 3.17 (Improved Ruzsa triangle inequality). If XY, Z are G-valued random vari-
ables on Q with (X,Y) independent of Z, then

HX — Y] <H[X — Z] + H[Z — Y] — H[Z] (3.1)

This is an improvement over the usual Ruzsa triangle inequality because X,Y are not
assumed to be independent. However we will not utilize this improvement here.

Proof. Apply Corollary 2.2]| to obtain
HX-Z,X-Y]+HY,X-Y]|>HX-Z, Y, X-Y]|+HX-Y]

Using
HX -Z,X—-Y]<HX-Z]+H[Y — Z]

(from tLemma Q.ﬂ, borollary 2.1d),

HY,X — Y] = H[X,Y]

(from Lemma 2.3), and

HX — Z,Y,X —Y] =H[X,Y, Z] = H[X,Y] + H[Z]

(from lLemma 2.j and borollary 2.24]) and rearranging, we indeed obtain (@) O




Lemma 3.18 (Ruzsa triangle inequality). If XY, Z are G-valued random variables, then
dlX;Y] < d[X;Z] +d[Z;Y].

Proof. By Lemma 3.1( and Lemmas @, , it suffices to prove this inequality assuming

that X, Y. Z are defined on the same space and are independent. But then the claim follows

from i:emma 3.1ﬂ and i;eﬁnition 3a O

Definition 3.19 (Conditioned Ruzsa distance). If (X, Z) and (Y, W) are random variables
(where X and Y are G-valued) we define

d[X|Z;Y|W] := Z P[Z = z]P[W = w]d[(X|Z = 2); (Y|(W = w))].

similarly
AX;Y|W] = > P[W = w]d[X; (Y|(W = w))].

Lemma 3.20 (Alternate form of distance). The expression d[X|Z;Y|W] is unchanged if
(X, Z) or (Y, W) is replaced by a copy. Furthermore, if (X,Z) and (Y, W) are independent,
then

dX|Z; YW =H[X - Y|Z, W] —-H[X|Z]/2 — H[Y|W]/2

and similarly
d[X;Y|W] =H[X —Y|W] - H[X]/2 —H[Y|W]/2.

Proof. Straightforward thanks to lLemma 3.d, ILemma 3.1d, lLemma 3.1]], lDeﬁnition 3.154,

Definition 2.1, O

Lemma 3.21 (Kaimanovich-Vershik-Madiman inequality). Suppose that X,Y,Z are inde-
pendent G-valued random variables. Then

HIX +Y + Z] — H[X + Y] < H]Y + Z] — H[Y].

Proof. From Corollary 2.2(] we have
HX, X+Y+Z|+HZ X+Y +Z| >HX, Z,X+Y + Z|+ HX +Y + Z].

However, using Lemmas , @ repeatedly we have H{X, X +Y + Z] = H[X,Y + Z] =
HX]|4+HY+Z],HZ, X+Y+Z]| =H[Z,X+Y] = HZ]+H[X+Y]and H[ X, Z, X+ Y+ Z] =
H[X,Y, Z] = HX] + H[Y] + H[Z]. The claim then follows from a calculation. O

Lemma 3.22 (Existence of conditional independent trials). For X,Y random variables,
there exist random variables X1, X5, Y’ on a common probability space with (X1,Y”), (X,,Y")
both ham'ni the distribution of (X,Y), and X, X5 conditionally independent over Y’ in the

sense of [Definition 2.28§.

Proof. Explicit construction. O

Lemma 3.23 (Balog-Szemerédi-Gowers). Let A, B be G-valued random variables on £, and
set Z := A+ B. Then

N P(Z = 2Jd[(AlZ = 2); (B|Z = 2)] < 3[A: B] + 2H[Z] — H[A] — H[B].  (3.2)



Proof. Let (Ay,B;) and (A4,, By) (and Z’, which by abuse of notation we call Z) be condi-
tionally independent trials of (A, B) relative to Z as produced by , thus (A, By)
and (A,, B,) are coupled through the random variable A; + B; = A, + B, which by abuse
of notation we shall also call Z.

Observe from that the left-hand side of (@) is

H[A, — By|Z] — H[A,[2]/2 — H[B,|Z] /2. (3.3)

since, crucially, (A;|Z = z) and (Bs|Z = z) are independent for all z.
Applying submodularity (Corollary 2.21)) gives
H[A; — B,] + H[A; — By, Ay, By] (3.4)
< H[A, — By, Ay + H[A, — By, By ]. '
We estimate the second, third and fourth terms appearing here. First note that, by
ary 2.30 and i:emma 2.5 (noting that the tuple (A; — By, A;, B;) determines the tuple
(A}, Ay, By, By) since Ay + By = Ay + By)

IH[AI - B27AlvBl] = IH[ADBDA%BQ’ Z} = QEH[A7B] - IH[Z] (35)
Next observe that
H[A; — By, Ay] = H[4;, By] < H[A] + H[B]. (3.6)
Finally, we have
[H[Al - BQaBl] = [H[AQ - B1yB1] = [H[A2a31] < [H[A] + [H[B]- (3-7)

Substituting (@), (@) and (@) into (@) yields
H[A; — B,] < 2l[A: B] + H[Z]
and so by
H[A, — B,|Z] < 2l[A : B] + H[Z].
Since

H[A|Z] = H[A,, A, + By] — H[Z]
— H[A, B] - H[Z]
— H[Z] —1[A: B] — 2H[Z] — H[A] — H[B]

and similarly for H[B,|Z], we see that (@) is bounded by 3l[A : B] + 2H[Z] — H[A] — H[B]
as claimed. O

Lemma 3.24 (Upper bound on conditioned Ruzsa distance). Suppose that (X,Z) and
(Y, W) are random variables, where X,Y take values in an abelian group. Then

d[X|Z;YW] <d[X;Y] + 3[X : Z] + 3[Y : W].

In particular,
dX;Y|W] < d[X;Y] + 1Y - W).

10



Proof. Using ILemma 3.2d and ILemma 3.7|, if (X’,2"),(Y’,W’) are independent copies of
the variables (X, Z), (Y, W), we have

dX|Z;Y|W] =HX —Y'|Z/ W] — H[X'|Z'| — i H[Y'|W]
< HX' = Y'] = JHIX'| 2] - SH[Y'[W]
=d[X; Y]+ 3[X : Z]+ 4y - W)

Here, in the middle step we used [Corollary 2.19, and in the last step we used [Definition 3.8
and Definition 2.15. [

Lemma 3.25 (Comparison of Ruzsa distances, I). Let X, Y, Z be random variables taking
values in some abelian group of characteristic 2, and with Y, Z independent. Then we have

diX;Y + Z] —d[X; Y] < L(H[Y + Z] — H[Y])
= 3d[Y; Z] + $H[Z] — FH[Y]. (3.8)
and
dX;Y|Y + Z] —d[X;Y] < J(H]Y + Z] — H[Z])
3d[Y; Z] + zH[Y] — 1H[Z]. (3.9)

PmoE. We first 5rove @) We may assume (taking an independent copy, using

and Lemma 3.1(, B.11)) that X is independent of Y, Z. Then we have

diX;Y + Z] - d[X;Y]
=HX+Y +Z]—HX +Y]— iH[Y + Z] + iH[Y].
Combining this with ﬁ:emma 3.2 I| gives the required bound. The second form of the result

is immediate [Lemma 3.11|.
Turning to (M), we have from IDeﬁnition 2.151 and ILemma Q.ﬂ

I[Y :Y + 2] = HY] + H[Y + Z] — H[Y,Y + Z]
= H[Y] +H]Y + Z] —H[Y, Z] = H]Y + Z] — H[Z],

immediate from O

and so (@) is a_consequence of . Once again the second form of the result is
Fomma 3,11

Lemma 3.26 (Comparison of Ruzsa distances, II). Let XY, Z,Z’ be random wvariables
taking values in some abelian group, and with Y, Z,7Z’ independent. Then we have

dX;Y +Z|Y +Z+ Z'] —d[X;Y]
<LIHY +Z+Z']+HY + Z] — H[Y] — H[Z')). (3.10)

Proof. By (with a change of variables) we have
AX;Y +Z)Y +Z+ 2| —d[X;Y + Z] < 3(H[Y + Z + Z'] — H[Z')).

Adding this to (@) gives the result. O

11



Chapter 4

The 100% version of PFR

Definition 4.1 (Symmetry group). If X is a G-valued random variable, then the symmetry
group Sym[X] is the set of all h € G such that X + h has the same distribution as X.

Lemma 4.2 (Symmetry group is a group). If X is a G-valued random variable, then Sym|[X]
is a subgroup of G.

Proof. Direct verification of the group axioms. O

Lemma 4.3 (Zero Ruzsa distance implies large symmetry group). If X is a G-valued random
variable such that d[X;X] =0, and z,y € G are such that P[X = x|, P[X = y] > 0, then
r —y € Sym[X].

Proof. Let X,. X, be independent copies of X (from ) Let A denote the range

of X. From [Lemma 3.11f and [Lemma 3.1( we have

[H[X1 - X2] = [H[Xl]'
Observe from that

[H[Xl - X2|X2] - [H[X1|X2] = [H[Xl]

and hence by
I[X, —X,: X;]=0.

By , X,—X, and X, are therefore independent, thus the law of (X;—X,|X; = x)
does not depend on = € A. The claim follows. O

Lemma 4.4 (Translate is uniform on symmetry group). If X is a G-valued random variable
with d[X; X] = 0, and x is a point with P[X = xy] > 0, then X —x is uniformly distributed
on Sym[X].

Proof. The law of X — x, is invariant under Sym[X], non-zero at the origin, and supported
on Sym[X], giving the claim. O

Lemma 4.5 (Symmetric 100% inverse theorem). Suppose that X is a G-valued random
variable such that d[X; X] = 0. Then there exists a subgroup H < G such that d[X; U] = 0.

Proof. Take H to be the symmetry group of X, which is a group by . From
emma 4.4, X — z, is uniform on H, and d[X; X — z,] = d[X;X] < 0, and the claim
follows. N

12



Corollary 4.6 (General 100% inverse theorem). Suppose that X, X, are G-valued random
variables such that d[X,; X5] = 0. Then there exists a subgroup H < G such that d[X1;Uy| =

d[Xy; Up] = 0.
Proof. Using Lemma 3.1§ and Lemma 3.15 we have d[X,; X,] = 0. hence by

d[X,;Uy] = 0 for some subgroup H. By [Lemma 3.1§ and Lemma 3.15 again we also have
d[X,; Uy] as required. O

13



Chapter 5

The Fibring lemma

Proposition 5.1 (General fibring identity). Let 7 : H — H’ be a homomorphism additive
groups, and let Z,, Zy be H-valued random variables. Then we have

d[Zy; Zy) 2 dm(Zy); w(Z,)) + d[Z1 |7 (Zy); Zo| 7 (Zs)).-
Moreover, if Z,, Zy are taken to be independent, then the difference between the two sides is

I(Zy — Zy : (7(Zy), 7(Zy))|7(Zy — Z3)).

Proof. Let Z,. Z, be independent throughout (this is possible by lLemma 3.1d and lLemma 3.7|).
By [Lemma 3.2, We have

dlZ,|n(Z,); Zo|m(Z,)]

=H[Z, — Z,|n(Z,),7(Z,)] — %[H[ZWT(ZQ] - %U—I[Z2‘7T(Z2)]
<H[Z, — Zy|n(Z, + Z,)] — %H[Zlhr(zl)} - %H[ZﬂW(Zz)]
=d[Zy; Zy) — d[n(Z,); m(Zy)).

In the middle step, we used [Corollary 2.2(, and in the last step we used the fact that

H[Zy, — Zy|7(Z, — Z,)] = H[Z, — Z,] — H[n(Z, — Z,)]

(thanks to ILemma 2.1j and lLernma 2.ﬂ) and that

H[Z;|m(Z;)] = H[Z;] = H[x(Z;)]

(since Z,; determines m(Z;)). This gives the claimed inequality. The difference between the
two sides is precisely

HZ, = Zy|m(Z, — Z,)] — H[Z, — Zy|m(2,), 7(Z,)].
To rewrite this in terms of (conditional) mutual information, we use the identity
H[A|B] — H[A|B,C] =1[A: C|B],
(which follows [Lemma 2.24) taking A := Z, — Z,, B i= 1(Z, — Z,) and C := (7(Z,),7(Zy)),

and noting that in this case H[A|B, C] = H[A|C] since C uniquely determines B (this may
require another helper lemma about entropy). This completes the proof. O
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Corollary 5.2. If 7 : G — H is a homomorphism of additive groups and X,Y are G-valued
random variables then
AIX; Y] = d(X); m(Y)].

Proof. By and the nonnegativity of conditional Ruzsa distance (from )

we have

d[X;Y] = dx(X); m(Y)] +d[X | 7(X); Y [ w(Y)].
The inequality follows from d[X | m(X);Y | m(Y)] >0 () O

Corollary 5.3 (Specific fibring identity). Let Y;,Y5,Y; and Y, be independent G-valued
random variables. Then

dlYy + Y5 Yy + Y] +d[Y1]Y] + Y35 V5|V + V)]
Y]+ Y5 : Yo + YY) + Y, + Y3 + Y| = d[Yy; Ys] + d[Y5;Y)].

Proof. We apply with H := G x G, H' := G, 7 the addition homomorphism
m(z,y) = x + y._and with the random variables Z; := (Y;,Y3) and Z, := (Y,,Y,). Then by
independence (Corollary 2.24)

d[Zﬁ ZZ] = d[Y1§ YQ] + d[Y3§Y4]
while by definition
din(Z,);m(Zy)] = d[Yy + Y33 Yy + Y.
Furthermore,
d[Zy|7(Zy); Zo|m(Z,)] = d[Y1]Y7 + Y33 Yo |Ys + Y],

since Z; = (Y7,Y3) and Y] are linked by an invertible affine transformation once 7(Z;) =
Y, +Y5 is fixed, and similarly for Z, and Y,. (This has to do with Lemma 2.13) Finally, we
have

I[Z, + Zy : (7(2y),7(Z5)) | 7(Z,) + 7(Z5)]
=0V + Y5, Y5 +Y): (V1 +Y3, Y, +Y)) [V + Y, + Y3 + Y]
=Y, +Y,:Y,+Y, |V +Y,+Y;+ Y]
where in the last line we used the fact that (Y] +Y5,Y; +Y, 4+ Y5+ 7)) uniquely determine

Y;+Y, and similarly (Y, +Y,,Y; + Y, + Y5 +Y,) uniquely determine Y; +Y5. (This requires
another helper lemma about entropy.) O
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Chapter 6

Entropy version of PFR

Definition 6.1. 7:=1/9.
Throughout this chapter, G = F%, and X9, X9 are G-valued random variables.
Definition 6.2 (7 functional). If X, X, are two G-valued random variables, then
7[Xy; Xo] i= d[ X5 Xo] +nd[XT; X4 ] 4+ nd[X3; X,).

Lemma 6.3 (7 depends only on distribution). If X1, X} are copies of X,, X5, then [X|; X5] =
T[Xy; Xo).

Proof. Immediate from . O

Definition 6.4 (7-minimizer). A pair of G-valued random variables X,, X, are said to be
a T-minimizer if one has
T[Xp; Xo] < 7[ X5 X5

for all G-valued random variables X1, X;.
Proposition 6.5 (7 has minimum). A pair X;, X, of T-minimizers exist.

Proof. By , 7 only depends on the probability distributions of X;, X,. This

ranges over a compact space, and 7 is continuous. So 7 has a minimum. O

6.1 Basic facts about minimizers

In this section we assume that X, X, are 7-minimizers. We also write k := d[X; X,].
Lemma 6.6 (Distance lower bound). For any G-valued random variables X7, X}, one has

d[X7; X5] > k —n(d[XY; X{] — d[XT; X, ]) — n(d[X3; X5] — d[X3; X,]).

Proof. Immediate from lDeﬁnition 6.2| and lProposition 6.51. O

Lemma 6.7 (Conditional distance lower bound). For any G-valued random variables X7, X},
and random variables Z, W, one has

d[X7|Z; X5|W] > k —n(d[X7; X7|Z] — d[X}; X, ]) — n(d[X3; X5|W] — d[X3; X,]).

Proof. Apply to conditioned random variables and then average. O
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6.2 First estimate

We continue the assumptions from the preceding section. .
Let X, X5, X, X, be independent random variables, with X, X; copies of X; and

X,, X, copies of X,. (This is possible thanks to )

We also define the quantity
I =X, + Xp 0 X+ X)X, + X, + X, + X)),
Lemma 6.8 (Fibring identity for first estimate). We have
(X, + Xy X, + X)) + d[X, X, + Xo; X)X, + X
FIX, + Xy X 4+ X, | X, + X + X, + X)) = 2k
Proof. Immediate from . O
Lemma 6.9 (Lower bound on distances). We have
(X, + Xy Xy + X)) > k—n(d[X9; X, + X,] — d[XD; X))
—n(d[X3; X5 + Xl} — d[X3; X,))
Proof. Immediate from . O
Lemma 6.10 (Lower bound on conditional distances). We have
d[X, X, + Xy X, | X, + X ]
> k= n(d[X0; X, X, + Xp] — d[XD; X))
— n(d[XS; Xo| Xy + X] — d[X3; X)),

Proof. Immediate from . O

Lemma 6.11 (Upper bound on distance differences). We have
d[X9; X, + Xp) — d[XY; X, < $k+ H[X,] — JHIX]
d[X9; X, + Xy] — d[X9; X,] < §k + JHX,] — JHIX,),
X0 X, X, + X — d[XD; X,] < 3k 4+ FHIX] — FHIX]
d[X9; Xo| Xy + X)) — d[X; X] < k+ H[Xp] — H[X,].

Proof. Immediate from 3 (and recalhng that k is defined to be d[X;; X,]). O
Lemma 6.12 (First estimate). We have I; < 2nk.

Prooi. Take a suitable linear combination of lLemma 6.@, tLemma 6.q, tLemma 6.1d, and
Lemma 6.1

O

One can also extract the following useful inequality from the proof of the above lemma.
Lemma 6.13 (Entropy bound on quadruple sum). With the same notation, we have
HX, + X5+ X, + X, < sHIX ]+ SHXG] + 2+ )k — 1. (6.1)

Proof._Subtracting Lemma 6.1( from , and combining the resulting inequality
with Lemma 6.11 gives the bound

d[X; + X25X2 + Xl] < (A +nk—1,

and the claim follows from and the definition of k. O
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6.3 Second estimate

We continue the assumptions from the preceding section. We introduce the quantity
Li=10[X, + X, : X, + X, |X, + X, + X, + X)),

Lemma 6.14 (Distance between sums). We have

dIX, + Xy Xy + K] 2 k= 2(dX0] + d[X; X)),

Proof. From one has
d[X; + X5 Xy + Xo] 2 kb —n(d[X0; X,] — d[X0; X, + X))
— (d[X5; X5] — d[X3; X5 + X)]).

Now gives

dIX9; X, 4+ X,] —d[X]; X,] < 3d[X; X|]

and
d[X9; Xy + X,o] — d[XY; X,] < 5d[Xy; Xy],

and the claim follows.

Lemma 6.15. We have

2(2nk — I
X0 X + [y ) < 26+ 22T,
Proof. We may use to expand
dIX, + XX, + X,
=HX, + X, + X, + X,] — TH[X, + X,] — JH[X, + X,
=HX, + X, + X, + X,] — sHIX,] — $HIX,]

- % (d[Xl; X1] + d[X2§ X2]) )
and hence by
X, + X X, + X,) < 2+ )k — 3 (d[X1; Xy + d[Xo; X,]) — 1.
Combining this bound with we obtain the result.

Lemma 6.16 (Second estimate). We have

2n(2nk — I
IQS%;HM_

L=
Proof. We apply , but now with the choice

(Y1a Y23 }/37Y4) = (X27X13X27X1)'
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Now can be rewritten as

d[X, + X5 Xp + Xp] + d[X] X, + Xy XX, + X))
FUX, + Xy X, + X, | X, + X, 4+ X, + X)) = 2k,
recalling once again that k := d[X;; X,]. From one has

XX, + Xy Xo| Xo + Xo] > b —n(d[X0; X,] — d[X9; X, |X, + X))

—n(d[X9; Xo] — d[X9; X,| X, + Xz])

while from we have
d[X?; XX, + Xl} —d[X]; X,] < 3d[X; X,

and
d[X9; X5 X, + Xz} —d[X9; X)) < 3d[X,; Xy).

Combining all these inequalities with , we have

I[X; + Xy : Xy + X1|X1 + X5 + X1 + X2] < n(d[Xy; Xy + d[Xy; Xs)).

Together with , this gives the conclusion.

6.4 Endgame

Let X, X,, Xl, )22 be as before, and introduce the random variables
U=X+X,, V=X +X, W:=X+X

and . B
Si=X,+ X, + X, + Xo.

Lemma 6.17 (Symmetry identity). We have
I(U : W|S) =I(V: W|S>
Proof. This should follow from ILemma 3.d, lLemma 2.2d, and lLemma 2.13'.

Lemma 6.18 (Bound on conditional mutual informations). We have

1—5n
I—n

Proof. From the definitions of I, I, and , we see that

L=IU:V|S), IL=IW:U|S), L=IV:W|S).

HUV|S)+ IV W[S) + (W : U|S) < bnk — ~— (2nk — I).

Applying tLemma 6.1ﬂ and tLemma 6.1d we have the inequalities

2n(2nk — I
IQSan_i_M_

1—n

We conclude that
dn(2nk — 1)

Lt I+ 0y < Ty Ak + ———

and the claim follows from some calculation.

19
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Lemma 6.19 (Bound on distance increments). We have

2
(d[X7; AlS] — d[XD; X;])
=1 Ac{U,V,W}

< (6 —3n)k + 3(2nk — I).

Proof. By (taking X = X0, Y = X, Z = X, and Z' = X, + X,, so that
Y+Z=UandY +Z+ Z' = 5) we have, noting that HY + Z] = H[Z"],

d[X7; U|S] — d[X}; X,] < 5(H[S] — H[X,]).

Further applications of give

d[X3;U|S] — d[X3; X] < 5(H[S] — H[X,])
d[X7;V|S] — d[X7; X,] < 5(H[S] — H[X,])
d[X3; V[S] — d[X3; X] < 5(H[S] — H[X,])

and
d[X7; W|S] — d[X?; X1] < 5(H[S] + H[W] — H[X,] — H[W']),

where W’ := X, + X,. To treat d[XJ; W|S], first note that this equals d[X3; W’|S], since
for a fixed choice s of S we have W’ = W + s (here we need some helper lemma about Ruzsa
distance). Now we may apply Lemma 3.2§ to obtain

d[X9; W'|S] — d[X3; X] < 5 (H[S] + H[W'] — H[Xy] — H[W])).
Summing these six estimates and using , we conclude that

2
(d[X7; AlS] — d[XP; X;])
i=1 Ac{U,V,W}

< 3H[S) — 3HX,] — HIX,

< (6 —3n)k+3(2nk — 1))

as required. O
Lemma 6.20 (Key identity). We have U +V + W = 0.

Proof. Obvious because we are in characteristic two. O

For the next two lemmas, let (T},T,,T3) be a G3-valued random variable such that
T, + 15 + T5 = 0 holds identically. Set

5= > IT;Ty. (6.3)

1<i<j<3
Lemma 6.21 (Constructing good variables, I). One has

k<64 n(dXY; Ty —d[XY; X1]) + n(d[X3; Ty] — d[X3; X))
+ STy : Ty) + $0[Ty : Ts).
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(Note: in the paper, this lemma was phrased in a more intuitive formulation that is
basically the contrapositive of the one here. Similarly for the next two lemmas.)

Proof. We apply with (A, B) = (T}, T,) there. Since T} + T, = Ty, the conclu-

sion is that
Z PITy = t3]d[(T1|Ts = t3); (To| T3 = t3)]
< 3U[Ty : Ty) + 2H[Ty] — H[T,] — H[Ty). (6.4)
The right-hand side in (@) can be rearranged as

2(H[Ty] + H[T,] + H[T5]) — 3H[T}, T3]
= 2(H[T\] + H[T,] + H[T3]) — H[Ty, T5] — H[T,, T3] — H[T}, T3] = 6,

using the fact (from ) that all three terms H[T}, T}] are equal to H[T}, Ty, T3] and
hence to each other. We also have

ZP[T3 = t3)(d[XY; (T |T5 = t5)] — d[X7; X))
= d[X7: 1| Ts) — d[X7; X1] < d[XTP;Ty] — d[XY; X, ] + 31Ty = T3]
by , and similarly
Z P[Ty = t35](d[X3; (To|T5 = t3)] — d[X3; X5))
< d[X3; Ty] — d[X9; Xo] + [T : T

1
2
Putting the above observations together, we have
Z PIT; = t:]0[(T1|Ty = t3); (To|T5 = t3)] < 6 +n(d[X7; T3] — d[X7; X))
+n(d[X3; Ty] — d[X9; X,]) + %W”[T1 (Ty) + %77”[75 : Ty
where we introduce the notation
P[Y1; Y] v= d[Yy; Ys] + n(d[XT; Y] — d[XT; X4]) + n(d[X3; Ys] — d[X3; X,)).

On the other hand, from we have k < ¢[Y;;Y5], and the claim follows. O

Lemma 6.22 (Constructing good variables, II). One has

k<dé+ = <+ii X9 T)] [XOX])).

=1 j=1

Proof. Average over all six permutations of T, T,, T5. O

Theorem 6.23 (7-decrement). Let X, X, be tau-minimizers. Then d[X,; X5] = 0.
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Proof. Set k := d[X;; X,]. Applying with any random variables (77,75, T5)
such that T} + T, + 75 = 0 holds identically, we deduce that

2 3
<o+ ;7<6 + ;;(d[X?;T-] - d[X?§Xi]))'

Note that § is still defined by (@) and thus depends on T3,75,,T5. In particular we may
apply this for

T,=U|S=s), T,=(V|[S=s), Ty=(W|S=s)

for s in the range of S (which is a valid choice by ) and then average over s with
weights pg(s), to obtain

2
k<5+ 2 <5+ > (dIXYAlS) - d[X?;Xi])>,
3 i=1 Ac{U,V,W}

where

§:=1U: VIS + [V : WI|S] + I[W : U|S].
Putting this together with tLemma 6.1%4 and tLemma 6.1d, we conclude that

k< (1 + ﬂ) (Gnk STl 11)) + g((G — 3n)k + 3(2nk — 11))

3 1—n
= (8n+ 1)k — (1_5n(1+n)—n)(2nk—fl)
1—n 3
< (8n+n*)k

since the quantity 2nk — I; is non-negative (by )7 and its coefficient in the above
expression is non-positive provided that n(2n + 17) < 3, which is certainly the case with
. Moreover, from we have 81+ n? < 1. It follows that k = 0, as
desired. O

6.5 Conclusion

Theorem 6.24 (Entropy version of PFR). Let G = [, and suppose that X9, X3 are
G-valued random variables. Then there is some subgroup H < G such that

d[X7; Up] + d[X3; U] < 11d[X?; X3,

where Uy is uniformly distributed on H. Furthermore, both d[X%;Uy| and d[XS;Uy]| are at
most 6d[XV; X9].

Proof. Let X, . X, be the 7-minimizer from IProposition 6.5. From II‘heorem 6.23, d[X; X, =
0. From [Corollary 4.6, d[X,;Uy] = d[X,;Uy] = 0. Also from 7-minimization we have
T[X1; X)) < 7[X9; XY]. Using this and the Ruzsa triangle inequality we can conclude. [

Note: a “stretch goal” for this project would be to obtain a ‘decidable‘ analogue of this
result (see the remark at the end of Section 2 for some related discussion).
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Chapter 7

Proof of PFR

Lemma 7.1 (Ruzsa covering lemma). If A, B are finite non-empty subsets of a group G,

then A can be covered by at most |A + B|/|B| translates of B — B.

Proof. Cover A greedily by disjoint translates of B.

O

Lemma 7.2. If A C F} is non-empty and |A+ A| < K|A|, then A can be covered by at

most KY3/2|A|Y/2/|H|Y? translates of a subspace H of F} with

[H/|A] € [K~1, K.

(7.1)

Proof. Let U, be the uniform distribution on A (which exists by )7 thus H[U 4] =
log |A| by . By [Lemma 2.3 and the fact that U, + U, is supported on A + A,
HU,+U,] <log|A+A|. By Definition 3.8, the doubling condition |[A+A| < K|A| therefore

gives
d[Uy;U,] <log K.

By , we may thus find a subspace H of I} such that

dlUa; U] < 207 log K
with C’ = 11. By we conclude that

|log [H| —log|Al| < C"log K,
proving (@) From , (@) is equivalent to
HU, — Uy < log(|A[*Y2|H|Y?) 4+ 1C log K.
By we conclude the existence of a point z, € F) such that
Pu,—u,, (To) = |A|7V2H| 2K O,

or equivalently
| AN (H + )| = K-C/2|A]2|H|V2,
Applying , we may thus cover A by at most

A+AnH+a)l - KAl o AP

[AN(H +xo)| = K-C"P2|A\2|H|Y? [H['/?
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translates of
(AN (H + ) — (AN (H + ) C H.

This proves the claim. O

Theorem 7.3 (PFR). If A C F} is non-empty and |A + A| < K|A|, then A can be covered
by most 2K'2 translates of a subspace H of F§ with |H| < |A|.

Proof. Let H be given by . If |H| < |A] then we are already done thanks to (@)
If |[H| > |A] then we can cover H by at most 2|H|/|A| translates of a subspace H' of H with
|H'| < |A|. We can thus cover A by at most

|H‘1/2

13/2
2K Az

translates of H’, and the claim again follows from (@) O

Corollary 7.4 (PFR in infinite groups). If G is an abelian 2-torsion group, A C G is
non-empty finite, and |A + A| < K|A|, then A can be covered by most 2K1? translates of a
finite group H of G with |H| < |A|.

Proof. Apply to the group generated by A, which is isomorphic to [ for some
n. O
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Chapter 8

Improving the exponents

The arguments here are due to Jyun-Jie Liao.

Definition 8.1 (New definition of ). 7 is a real parameter with n > 0.

Previously in Definition 6.1 we had set n = 1/9. To implement this chapter, one should

refactor the previous arguments so that 7 is now free to be a positive number, though the
specific hypothesis n = 1/9 would now need to be added to .

Let X?. X9 be G-valued random variables, and let X;, X, be 7-minimizers as defined in

For the next two lemmas, let (T},T,,7T3) be a G3-valued random variable such that
Ty + T, + Ty = 0 holds identically. Let & be the quantity in (.3).

We have the following variant of Lemma 6.21]:

Lemma 8.2 (Constructing good variables, I’). One has
ke <0+ n(d[XY; Ty T3] — d[XT; X, ]) + n(d[X3; T|Ty] — d[X3; X5]).

Proof. We apply with (A, B) = (T, T5) there. Since T} + T;, = Ty, the conclu-

sion is that
tZ PITy = t3]d[(T)|T = t3); (To|T3 = t3)]
3
<31 : Ty + 2H[T5] — H[Ty] — H[TS]. (8.1)
The right-hand side in (@) can be rearranged as

2(H[Ty] + H[T,] + H[T3]) — 3H[T}, T3]
= 2(H[T\] + H[T,] + H[T3]) — H[Ty, T5] — H[Ty, T3] — H[T}, T3] = 4,

using the fact (from ) that all three terms H[T;, T}] are equal to H[T}, T,, T3] and
hence to each other. We also have

ZP[T?, = t3)(d[XY; (11| T3 = t3)] — d[X7; X1])

= d[X?§T1|T3] - d[X?§ Xﬂ
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and similarly
tz P15 = t?,](d[X(z)§ (TL|T5 = t3)] — d[Xg;XQ])
3 < d[XS§T2|T3] - d[Xg§ Xs).

Putting the above observations together, we have

; P[Ts = t]Y[(T1 [Ty = t3); (To|Ty = t3)] < & + n(d[X7; T4 |T5] — d[X7; X,])

3
+n(d[X3; T, |T5] — d[X3; X))

where we introduce the notation

YY1 Vo] == d[Y1; Yol + n(d[XT; V1] — d[XT7; X4]) + n(d[X3; Ys] — d[XT; X))
On the other hand, from we have k < ¢[Y;;Y;], and the claim follows. O

(One could in fact refactor to follow from lLemma 8.ﬂ and lLemma 3.24]).

Lemma 8.3 (Constructing good variables, II’). One has

2
F<O+gd > (XDTIT] —d[XP: X))
i=1 1<5,1<3;5#1

Proof. Average over all six permutations of T, T}, T5. O

Now let Xl,XQ,Xl, )N(Q be independent copies of X, X5, X;, X5, and set

U=X+X,, V=X +X,, W=X+X

and . .
S=X+X,+ X, + X,

and introduce the quantities
k= d[X,; X,]

and
L =1U:V|S).

Lemma 8.4 (Constructing good variables, III’). One has

2
k<IU:VIS)+I(V:W|[S)+ I(W:U[S)+ 2> > (d[X7; A|B, S] — d[X}; X}]).
6 i=1 A,Be{U,V,W}A+B

Proof. For each s in the range of S, apply with T, T5. Ty equal to (U]S = s),
(VIS = s), (W|S = s) respectively (which works thanks to ), multiply by
P[S = s], and sum in s to conclude. O

To control the expressions in the right-hand side of this lemma we need a general entropy
inequality.
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Lemma 8.5 (General inequality). Let X, X5, X4, X, be independent G-valued random

variables, and let Y be another G-valued random variable. Set S := X; + X, + X3 + X,.
Then

dlY; Xq + X,| X, + X5, 5] —d[Y; X4]
< 1(d[X 15 Xo] + 2d[X1; X5 + d[Xo; X))
+ 3 (XX 4+ X5 Xo| Xy + Xy] — d[X5] X5 4+ X3 XX + X))
+ 5 (HIX + X5] = H[X5 + Xy] + H[X,] — HX;]
+ HXo | X, + Xy ] — HIX X + X))
Proof. On the one hand, by and two applications of we have
dY; X, + X,| X, + X, 9
< d[Y; Xy + X,[S] + SI[X, + X, 0 Xy + XS]
<d[Y; X, + X,]
+ 5 (d[X7 + Xo; X3 + Xy +1[X; + X+ Xy + X;58])
+ 3 (HX; + X5] — H[X5 + X,])
<d[Y; Xy]
+ $(d[X 15 Xo] + d[X) + X5 X5 + Xy] +1[X) + X, 0 X; + X5(9))
+ 3 (HX, + X,] — H[X; + X,] + H[X,] — HX)).
From (with Y7,Y5,Y5, Y, set equal to X5, X, X, X, respectively) one has
d[Xs + X5 Xy + Xo] + d[ X[ X3 + X3 X1 X; + X
HI[X5 + X, : X, + X,|S] = d[X5; Xyq] + d[Xy; X,
Rearranging the mutual information and Ruzsa distances slightly, we conclude that
dY; X, + X,| X, + X, 9]
<d[Y; X,]
+ 5 (d[Xy; Xo] + d[X; X3] 4 d[Xo; Xy] — d[X3] X5 + X5 X[ X, + X))
+ 3 (HIX; + X5] = H[X5 4+ Xy] + HX,] — HX,]).
On the other hand, (X; +X,|X; + X3, S) has an identical distribution to the independent

sum of (X;|X; +X;3) and (X,| X5+ X,). We may therefore apply to conditioned

variables (X, |X;+X3 = s) and (X,|X,+ X, = t) and average in s, ¢ to obtain the alternative
bound

d[Y;Xl +X2|X1 +X3,S]
<dY; XX 4 X3] 4 3d[ XX + Xp5 X[ X, + X
+ 1 (HIX5| X5 + X,] — HIX, | X, + X3))
< d[Y§X1]

+ %(d[XﬁX:z] +d[X; X, + X35 X | Xy + X))
+ 1 (HIX5| X5 + Xy] — HIX, | X, + X3] + HIX,] — H[X3).

If one takes the arithmetic mean of these two bounds and simplifies using , one
obtains the claim. O
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Returning to our specific situation, we now have

Lemma 8.6 (Bound on distance differences). We have

2
> > d[X7; A|B, ] — d[X}; X,]
i=1 A,Be{U.V,W}:A+B
<12k + w

Proof. If we apply with X; == X, Y := X¢ and (X,, X3, X,) equal to the 3!
permutations of (X,. X,. X,). and sums (using the symmetry HX|X + Y] = H[Y|X + Y],
which follows from [Lemma 2.19), we can bound

d[X?; A|B, S| —d[X}; X, ]
A,Be{U,V.W}:A+B

(6d[X7; Xy] +6d[X1§X2]
+6d[ X5 Xy + 2d[ X5 X, + 2d[ X Xy + 2d[X,; X))
+ L2H[X, + X5) + 2H[ X, + X ]+ 2H[X, + X,
— 2H[X; + X, — 2H[X, + X,] — 2H[X, + X,))
+ 3 (HX, X, + X+ HIX X, + X)) + HIX X, + X
— HIX, X, + X)) — X X+ X)) — HEXG X + X)),

1
1

which simplifies to
i(16k +6d[ X ; X1) + 2d[Xy; Xs))
+ 1 (H[Xy + Xy] = H[X, + Xo] + d[X,| X, + X,] — d[X X + X)),
A symmetric argument also bounds

d[X9; A|B, S] — d[X9; X,
A,Be{U,V.W}:A4B

by
116k + 6d[X5; X,] 4 2d[X,; X))
+ %(H[Xz + Xo] = H[Xy + Xq] +d[X1]X; + X;] = d[X5]| X5 + X5)).

On the other hand, from one has
2(2nk — 1)

d[X,; X,] +d[Xy; X,] < 2k + o,

Summing the previous three estimates, we obtain the claim. O
Theorem 8.7 (Improved 7-decrement). Suppose 0 < n < 1/8. Let X, X, be tau-minimizers.
Then d[X; X,] = 0.
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Proof. From lLemma 8.4], ILemma S.d, and lLemma 6.1%4 one has

(1—5n—50)(2nk — L)

k < 8nk —
(1=m)
_p_4 _
For any n < 1/8, we see from that the expression % is nonnega-
tive, and hence k = 0 as required. O

Theorem 8.8 (Limiting improved 7-decrement). For n = 1/8, there exist tau-minimizers
X1, X, satisfying d[X,; X,]) = 0.

Proof. For each n < 1/8, consider minimizers X f and Xg from lProposition 6.5. By h‘heo«l
m, they satisfy d[X; X5] = 0. By compactness of the space of probability measures on
G, one may extract a converging subsequence of the distributions of X} and X as n — 1/8.
By continuity of all the involved quantities, the limit is a pair of tau-minimizers for 1/8
satisfying additionally d[X; X,] = 0. O

Theorem 8.9 (Improved entropy version of PFR). Let G = F3, and suppose that X, X3
are G-valued random variables. Then there is some subgroup H < G such that

d[X7; Up] + d[X3; U] < 10d[X?; X3,
where Uy is uniformly distributed on H. Furthermore, both d[X%;Uy| and d[X9;Uy]| are at
most 6d[XV; X9].
Proof. Let X,.X, be the good 7-minimizer from . By construction, d[X;; X,] =
Corollary 1.4

0. From 0, d[X1;Uy] = d[X5;Uy] = 0. Also from 7-minimization we have
T[X1; Xy] < 7[X9; XY]. Using this and the Ruzsa triangle inequality we can conclude. [

One can then replace with

Lemma 8.10. If A C F} is non-empty and |A + A| < K|A|, then A can be covered by at
most KS|A|Y/2/|H|Y/? translates of a subspace H of F} with

[H|/IA] € [K~19, K9],

Proof. By repeating the proof of and using one can obtain the

claim with 13/2 replaced with 6 and 11 replaced by 10. O
This implies the following improved version of Theorem @:

Theorem 8.11 (Improved PFR). If A C F} is non-empty and |A+ A| < K|A|, then A can
be covered by most 2K translates of a subspace H of Y with |H| < |A|.

Proof. By repeating the proof of and using one can obtain the

claim with 11 replaced by 10. O

Of course, by replacing ITheorem 7.31 with ITheorem 8.11] we may also improve constants
in downstream theorems in a straightforward manner.
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Chapter 9

Homomorphism version of PFR

In this section, G, G’ are finite abelian 2-groups.

Lemma 9.1 (Hahn-Banach type theorem). Let H, be a subgroup of G. Then every homo-
morphism ¢ : Hy — G’ can be extended to a homomorphism ¢ : G — G'.

Proof. By induction it suffices to treat the case where H, has index 2 in G, but then the
extension can be constructed by hand. O

Lemma 9.2 (Goursat type theorem). Let H be a subgroup of G x G'. Then there exists a
subgroup H, of G, a subgroup H; of G’, and a homomorphism ¢ : G — G’ such that

H:= {(1’7¢(.’E> +y) JRAAS Han € Hl}
In particular, |H| = |Hy||H,|.

Proof. We can take H, to be the projection of H to G, and H; to be the slice H; := {y :
(0,y) € H}. One can construct ¢ on Hy, one generator at a time by the greedy algorithm, and
then extend to G by . The cardinality bound is clear from direct counting. [

Theorem 9.3 (Homomorphism form of PFR). Let f : G — G’ be a function, and let S
denote the set

S={fx+y)—flx) - fy): 2,y € G}.
Then there exists a homomorphism ¢ : G — G’ such that
{f(2)—d(x) : 2 € G} <|S]"°.
Proof. Consider the graph A C G x G’ defined by
As={(z, f(z)) 2 € GY.
Clearly, |A| = |G|. By hypothesis, we have
A+ AcC{(z,f(x)+s):z€G,seS}

and hence |A+ A| < |S||A|. Applying Corollary 13.4(, we may find a subspace H C G x G’

such that |H|/|A| € [|S]7%,|S|®] and A is covered by ¢ + H with |¢| < |S|°|A|"/?/|H|Y?. If
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we let H,, H; be as in 7 this implies on taking projections that G is covered by
at most |c| translates of H,. This implies that

[cl[Ho| = |GI;
since |Hy||H,| = |H|, we conclude that
[Hy| < [e|[H[/|G| = |e|[H[/]A]

By hypothesis, A is covered by at most |c| translates of H, and hence by at most |c||H;|
translates of {(z,¢(x)) : © € G}. As ¢ is a homomorphism, each such translate can be
written in the form {(z, ¢(x) + d) : € G} for some d € G’. Since

2
H| [A[Y2N" |H]
el Hy| < IC\QW < | IS "2 ) 1A 151,

the result follows. O
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Chapter 10

Approximate homomorphism
version of PFR

Definition 10.1 (Additive energy). If G is a group, and A is a finite subset of G, the
additive energy E(A) of A is the number of quadruples (ai,ay,as,a,) € A* such that
ay +ayg = az + ay.

Lemma 10.2 (Cauchy—Schwarz bound).
If G is a group, A, B are finite subsets of G, then

s ) eAxAtara Bl
= B |

Proof. If B is empty then the claim is trivial (with the Lean convention 0/0), so without
loss of generality B is non-empty. We can rewrite

{(a,0a’) e Ax A:a+a € B} = Zr(b)
beB

where r : G — N is the counting function
r(b) :=1|{(a,a’) € AX A:a+ad =b}.
From double counting we have

beG
The claim now follows from the Cauchy—Schwarz inequality
O _r®)) < [BlY_r(b)
beB beB
O
Lemma 10.3 (Balog-Szemerédi-Gowers lemma).
Let G be an abelian group, and let A be a finite non-empty set with E(A) > |A|?>/K for

some K > 1. Then there is a subset A’ of A with |A’| > |A|/(C;K%2) and |A" — A’| <
Cy K| A|, where (provisionally)

C,=24Cy=1,Cy=20C, =5.
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Proof. See https://terrytao.files.wordpress.com/2024/01/simplebsg.pdf. O

Theorem 10.4 (Approximate homomorphism form of PFR). Let G,G’ be finite abelian
2-groups. Let f : G — G’ be a function, and suppose that there are at least |G|?/K pairs
(z,y) € G% such that

fla+y)=flx)+ fy).

Then there exists a homomorphism ¢ : G — G’ and a constant ¢ € G’ such that f(x) =
é(x) + ¢ for at least |G|/(2'4* x K'22) values of v € G.

Proof. Consider the graph A C G x G’ defined by

As={(z, f(z)) 2 € GY.
Clearly, |A| = |G|. By hypothesis, we have a +a’ € A for at least |A|?/K pairs (a,a’) € A2.
By Lemma 10.2, this implies that E(A) > |A|*/K2. Applying Lemma 10.3, we conclude that
there exists a subset A’ C A with |A’| > |A|/C,K?C2 and |A’ + A’| < C,C5K?©2+Ca)| 4/,
Applying [Corollary 13.4(, we may find a subspace H C G x G’ such that |H|/|A’| € [L~8, L?]

and a subset ¢ of cardinality at most L°|A’[Y/2/|H|'/? such that A’ C ¢+ H, where L =
C, 0, K2 @2+C) If we let Hy, H, be as in , this implies on taking projections the

projection of A’ to G is covered by at most |c| translates of H,. This implies that

e[| Ho| = |A"];
since |Hy||H,| = |H|, we conclude that
[Hy| < [e][H|/|A].

By hypothesis, A’ is covered by at most |c| translates of H, and hence by at most ||| H;|
translates of {(z,¢(z)) : © € G}. As ¢ is a homomorphism, each such translate can be
written in the form {(z, #(x) + ¢) : * € G} for some ¢ € G’. The number of translates is
bounded by

2
JH (AN
< | L = LY.
o |A’|< =) A

By the pigeonhole principle, one of these translates must then contain at least |A’|/L1° >
|G|/(C,Cy K(C2HCa)10(C [2C2) elements of A’ (and hence of A), and the claim follows. [

With a bit more effort, we can remove the constant term ¢, at the cost of reducing the
set of agreement slightly. We need some preliminary lemmas.

Lemma 10.5 (Duality). Let G be a finite abelian 2-group. Then the finite abelian 2-group
Hom(G, Z/2Z) of homomorphisms from G to Z/2Z has the same order as G.

Proof. By the classification of finite abelian groups, G is isomorphic to (Z/2Z)". Then
Hom(G, Z/27) is isomorphic to (Z/2Z)™ as well, and hence has the same order. O

Lemma 10.6 (Counting). Let G be a finite abelian 2-group, and let x € G be non-zero.
Then there are |G|/2 homomorphisms ¢ : G — Z/2Z such that ¢(x) = 1.

Proof. The map ¢ — ¢(z) is a homomorphism from Hom(G,Z/27) to Z/2Z, and by Lemma
the kernel has order equal to the order of G/{0,x}, which is |G|/2. Then the preimage
of 1 must also be of order |G|/2. O
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Lemma 10.7 (Slicing). Let G be a finite abelian 2-group, and let A be a subset of G. Then
there exists a homomorphism ¢ : G — 7 /27 such that |AN ¢~ (1)| > (JA| —1)/2.

Proof. We have

S JAne T ()| =Y {4 € Hom(G, Z/22) : ¢(x) = 1}]

¢cHom(G,Z/27) €A
> (Al =1)IGl/2
thanks to Lemma . The claim now follows from Lemma and the pigeonhole prin-
ciple. O

Corollary 10.8 (Approximate homomorphism form of PFR, no constant term). Let G,G’
be finite abelian 2-groups. Let f : G — G’ be a function, and suppose that there are at least
|G|?/K pairs (z,y) € G? such that

fle+y) = @)+ fy).

Then there exists a homomorphism ¢” : G — G’ such that f(x) = ¢”(x) for at least
(|G|/ (272 % K146) —1)/2 wvalues of x € G.

Proof. By Theorem , there exists a homomorphism ¢ : G — G’ and a constant ¢ € G’
such that the set A :={z € G : f(z) = ¢(x) + ¢} has cardinality at least |G|/(2'7? x K14°).
By Lemma , there exists a homomorphism ¢’ : G — Z /27 such that

[AN¢H D] > (14l = 1)/2 > |G]/(2'7° « K1),

Then the claim follows by taking ¢” = ¢+ ¢" e ¢ (where we view G’ as a Z/2Z-module). [
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Chapter 11

Weak PFR over the integers

Lemma 11.1. If G is torsion-free and X,Y are G-valued random variables then d[X;2Y] <
5d[X;Y].

Proof. Let Y7,Y, be independent copies of Y (also independent of X). Since G is torsion-free
we know X,Y; —Y,;, X — 2Y] uniquely determine X, Y], Y, and so

Similarly
H(X, X —2Y)) =H(X) + H(2Y;) = H(X) + H(Y).

Furthermore
H(Y, — Yo, X —2;) = H(Y; — Yy, X — ¥, — Yp) < H(Y; — Y3) + H(X — Y, — ).
By submodularity ()
H(X,Y,,Y,, X —2Y;) + H(X —2Y;) < H(X, X —2Y;) + H(Y; — Y, X —2Y7).
Combining these inequalities
H(X —2Y;) < H(Y; — Ya) + H(X — Y, — Y3) — H(Y).

Similarly we have
H(Y}, Y5, X =Y, = Y5) = H(X) + 2H(Y),

HY, X =Y, = Y,) = HY) + H(X = Y5),

and
H(Y;, X =Y, —Y5) =H(Y) + H(X - Y;)

and by submodularity (Corollary 2.21]) again
[H<Yla}/2>X_Y1 _}/2) + IH(X_YI _Y2> < D—|<}/1aX_Y1 _}/é) + [H(Y2aX_Y1 _YQ)
Combining these inequalities (and recalling the definition of Ruzsa distance) gives

HX — Y, —Y,) SHX —Y)) + H(X — Y,) — H(X) = 2d[X; Y] + H(Y).
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It follows that
H(X —2Y;) < H(Y; = Y;) +2d[X; Y]

and so (using H(2Y) = H(Y))
d[X;2Y] = H(X — 2Y;) — H(X)/2 — H(2Y)/2
<HY; —Y,) +2d[X;Y] —H(X)/2 —H(Y)/2
H(Y) — H(X)
2
Finally note that by the triangle inequality ( ) we have
d[Yy; Y] < d[Yy; X]+d[X; Y] = 2d[X; Y]

The result follows from (H(Y) — H(X))/2 < d[X;Y] (Lemma 3.13). O

Lemma 11.2. If G is a torsion-free group and X,Y are G-valued random wvariables and
¢ : G — F¢ is a homomorphism then

H(¢(X)) <10d[X;Y].
Proof. By borollary 5.j and lLemma 11.]] we have
d[p(X); $(2Y)] < d[X;2Y] < 5d[X; Y]

and ¢(2Y) = 2¢(Y) = 0 so the left-hand side is equal to d[¢(X);0] = H(¢(X))/2 (using
Lemma 3.9). O

= d[Yy; V5] + +2d[X;Y].

Lemma 11.3. Let G =4 and a € (0,1) and let X,Y be G-valued random variables such
that

H(X) + H(Y) > Z—Od[X;Y].

There is a non-trivial subgroup H < G such that

and
H(y (X)) + H((Y)) < a(H(X) + HY))
where v : G — G/ H is the natural projection homomorphism.
Proof. By [Theorem 8.9 there exists a subgroup H such that d[X; Uy]+d[Y; Uy| < 10d[X;Y].
Using we deduce that H(¥(X)) + H(¥(X)) < 20d[X;Y]. The second claim
follows adding these inequalities and using the assumption on H(X) 4+ H(Y).
Furthermore we have by
log| H| — H(X) < 2d[X; U]

and similarly for Y and thus

togl 1] < HOO + HY) H(X) + H(Y)
- 2

+d[X; Uy +d[Y;Ug] < +10d[X;Y]

<1+a
2

Finally note that if H were trivial then ¥/(X) = X and ¥(Y) =Y and hence H(X)+H(Y)
0, which contradicts .

(H(X) + H(Y)).

o
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Lemma 11.4. IfG = [Fg and o € (0,1) and X,Y are G-valued random variables then there
is a subgroup H < F¢ such that

1+«
log|H| < —— %
oglfl < 57—

and if ¥ : G — G/H is the natural projection then

(X)) + H@() < 22d[(X); (¥ )],

(07

(H(X) +H(Y))

Proof. Let H < [Fg be a maximal subgroup such that

H(X) + H(Y)) > 2 dlg(X); 9(V)]

and such that there exists ¢ > 0 with

logl | < o0 (1= ) (H(X) + H(Y))

1—a)

and
H((X)) + H((Y)) < e(H(X) + H(Y)).
Note that this exists since H = {0} is an example of such a subgroup or we are done with
this choice of H.
We know that G/H is a 2-elementary group and so by Lemma there exists some
non-trivial subgroup H' < G/H such that

logl ] < —E S (H(X)) + H(w(Y))

and
H(" o (X)) + H(@" o (Y)) < a(H((X)) + H((Y)))
where @' : G/H — (G/H)/H’. By group isomorphism theorems we know that there exists
some H” with H < H” < G such that H = H”/H and ¢ o ¢(X) = 9"(X) where
" : G — G/H" is the projection homomorphism.
Since H’ is non-trivial we know that H is a proper subgroup of H”. On the other hand
we know that

1
log| | = log|H'| + log| | < T (1~ ae)(HX) + H(Y))

(1-a)
and
H(y" (X)) + H@"(Y)) < a(H((X)) + H((Y))) < ac(H(X) + H(Y)).
Therefore (using the maximality of H) it must be the first condition that fails, whence

H(W (X)) + O (Y)) < g (X); 07 (V)]

(0%

O

We could use the previous lemma for any value of a € (0, 1), which would give a whole
range of estimates in Theorem . For definiteness, we specialize only to o = 3/5, which
gives a constant 2 in the first bound below.
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Lemma 11.5. IfG = [Fg and o € (0,1) and X,Y are G-valued random variables then there
is a subgroup H < F¢ such that

log|H| < 2(H(X) + H(Y))
and if ¥ : G — G/H is the natural projection then
H(y (X)) + H((Y)) < 34d[o(X); (V).

Proof. Specialize to a = 3/5. In the second inequality, it gives a bound 100/3 <
34. O

Lemma 11.6. Let ¢ : G — H be a homomorphism and A, B C G be finite subsets. If
x,y € H then let A, = AN ¢~ () and B,=Bn ¢~Y(y). There exist x,y € H such that
A, B, are both non-empty and

AllB|

d[¢(U,); ¢(Up)]log 14, |[B,| < (H(@(Ua)) + H(@(Up)))(d(Ua, Ug) —d(U,,, UBy))'

Proof. The random variables (U, | #(U,) = z) and (Ug | ¢(Ug) = y) are equal in distri-

bution to U, and Up_respectively (both are uniformly distributed over their respective
fibres). It follows from that

A_||B
Z |Z||||B?|d[UAI;UBy] =d[Uy | ¢(Ua);Ug | 9(Up)]

z,yeH
< d[U;Upl = d[¢(U,s); ¢(Up)]-
Therefore with M := H(¢(U,)) + H(¢p(Ug)) we have

S By, v, 1) + MG 6(0,)) < Ml U

x,yeH

Since
|A, [ B,

[AllB|

Al B
AL |1By|

ve Y

z,yeH

log

we have

A, ||B
Z ||,Zi||||By| (Md[UAQUBy] +d[p(U,); ¢(Up)]log

z,yeH

|Al|B]
[A.]1B,|

) < MU

It follows that there exists some x,y € H such that |A,|,[B,| # 0 and

A||lB
MU, 3Us, ]+ dig(U,)s U)ok T 2 < MU U
z11 Py

O

Definition 11.7. If A C 79 then by dim(A) we mean the dimension of the span of A—A over
the reals — equivalently, the smallest d’ such that A lies in a coset of a subgroup isomorphic
to 7.
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Theorem 11.8. If A, B C Z% are finite non-empty sets then there exist non-empty A’ C A
and B’ C B such that
Al Bl

SaB
such that max(dim A’, dim B’) < %d[Um Ugl.

< 34d[U 4; U]

Proof. Without loss of generality we can assume that A and B are not both inside (possibly
distinct) cosets of the same subgroup of Z¢, or we just replace Z¢ with that subgroup. We
prove the result by induction on |A| + |B|.

Let ¢ : 7% — [Fg be the natural mod-2 homomorphism. By

max(H(¢(U4)), H(@(Up))) < 10d[U 4; Upl.

We now apply , obtaining some subgroup H < F¢ such that
log|H| < 40d[U »; U]

and

~ ~ ~ ~

H(6(U4)) +H(6(Up)) < 34d[p(U,); 9(Up)]

where <5 : 7% - F4/H is ¢ composed with the projection onto [Fg/H.
By there exist z,y € F$/H such that, with A, = AN ¢ *(z) and similarly
for B,
Al B
log ——— < 34(d[U4; U] —dlUy, ;Ug ).
0g |AT||By| = ( [ A B} [ A By])

Suppose first that |A,| + |B,| = |A[ 4+ [B|. This means that $(A) = {z} and (B) = {y},
and hence both A and B are in cosets of ker 5 Since by assumption A, B are not in cosets
of a proper subgroup of Z¢ this means ker ¢ = Z¢, and so (examining the definition of ¢) we
must have H = F4. Then our bound on log|H| forces d < l(ngd[UA; Upg| and we are done
with A’ = A and B’ = B.

Otherwise,

|4, + By < [A[ +[B].

By induction we can find some A" C A, and B" C B, such that dim A’, dim B” < 1§£2d[UAm5 UBu] <
204U 4;Up] and

log2
og Al Bl ot .
B = M,
Adding these inequalities implies
| Al B|
< 344U 4; U
og |A,||B/| = [ A B]

as required. O

Theorem 11.9. If A C 7% is a finite non-empty set with d[U,;U,] < log K then there
exists a non-empty A" C A such that

A" = K17 |A]

and dim A’ < 122?2 log K.
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Proof. Immediate from and rearranging. O

Theorem 11.10. Let A C 7% and |A — A| < K|A|. There exists A’ C A such that

|A’| > K~17|A] and dim A’ < 1j%logK.

Proof. As in the beginning of [Theorem 73 the doubling condition forces d[U 4;U4] < log K,
and then we apply [Theorem 11.9. O
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Chapter 12

The m-torsion case

12.1 Data processing inequality

Lemma 12.1 (Data processing for a single variable). Let X be a random variable. Then
for any function f on the range of X, one has H[f(X)] < H[X].

Proof. We have
HIX] = H[X, f(X)] = H[f(X)] + HX]f(X)]

thanks to ILemma 2.j and ILemma 2.1?1, giving the claim. O

Lemma 12.2 (One-sided unconditional data processing inequality). Let X,Y be random
variables. For any function f,g on the range of X, we have I[f(X) : Y] <X : Y].

Proof. By [Lemma 214 it suffices to show that H[Y|X] < H[Y|f(X)]. But this follows from
borollary 2.20 (and Lemma Qﬂ) O

Lemma 12.3 (Unconditional data processing inequality). Let X, Y be random wvariables.
For any functions f,g on the ranges of X,Y respectively, we have l[f(X) : g(Y)] < 1[X : Y].

Proof. From [Lemma 12.9, Lemma 2.9 we have [f(X):Y]<IX:Y]and [[f(X):g(Y)] <
0[f(X) : Y], giving the claim. O

Lemma 12.4 (Data processing inequality). Let X,Y Z. For any functions f,g on the
ranges of X, Y respectively, we have I[f(X) : g(Y)|Z] <I[X : Y|Z].

Proof. Apply X,Y conditioned to the event Z = z, multiply by P[Z = z],

and sum using |D . O

12.2 More Ruzsa distance estimates

Let G be an additive group.
Lemma 12.5 (Flipping a sign). If X, Y are G-valued, then

d[X;-Y] < 3d[X;Y].
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Proof. Without loss of generality (using ILemma 3.1d and ILemma 37|) we may take X, Y to
be independent. By (X;,Y7), (X,,Y5) be copies of (X.Y) that are conditionally independent
over X; —Y; = X, —Y, (this exists thanks to Lemma 3.22). By Lemma 3.7, we can also find

another copy (X3, Y3) of (X,Y) that is independent of X;,Y;, X,,Y,. From Corollary 2.21],
one has

[H[X37}/27 X17Y37 XQ, Y17 XBa }/33 X3+Y3]+D—|[X3+Y3] < [H[X37Y27 X17)/3, X27 Yla X3+Y3]+[H[X3a Y3a X3+Y3]'

From ILemma 3.1]]7 ILemma 3.]], ILemma 3.1d we have

HX, + ¥a] = gHIX] + gH[-Ya] + d[Xy; Y] = THIX] + JHIY] 4+ d[X; Y],

Since X + Y5 is a function of X3, Y5, we see from ILemma 2.2] and k]orollary 2.24] that
H[ X5, Y;, X5 4+ Y5] = H[X,, Y;] = H[X, Y] = HX] + H[Y].
Because X| —Y; = X, —Y,, we have
Xg+Ys=(X3-Yy) — (X, = Yy) + (X, + 1))
and thus by
HIX5 — Y5, Xy — Y3, Xp, V), X 4+ V5] = HIX; — Y5, X — V5, X, V)]

and hence by [Corollary 2.18

HX5 — Y5, Xy — Y3, X5, Y7, Xy + V3] < H[X; — Y5] + HIX, — V3] + H[X,] + H[Y;].

Since X, Y, are independent, we see from ILemma 3.1]], ILemma 3.1d that

HX, — ¥3] = SHIX] + SH[Y] +d[X; Y]
Similarly
HIX, — Y] = %[H[X] 4 %[H[Y] X Y.
We conclude that
HXs — Yo, Xy — Yy, X, Yy, X + Ya] < 2H[X] + 2H[Y] + 2d[X; Y]
Finally, from we have
HIX ), Yy, X, Yo, Xy, V3] S H[X — Yo, Xy — V3, X, V), X, Vg, X + V3]

From [Corollary 2.24 followed by [Corollary 2.3(], we have

H[XDYDXQ’}/Q)X?)?YS} = IH[X17Y17X1 _Yl] + IH[X%}/%XQ _}/2] - [H[Xl _Yl] + IH[X37Y3]

and thus by ILemma 3.1]], ILemma 3.1d7 ILemma 2.1 borollary 2.24|

1 1
Applying all of these estimates, the claim now follows from linear arithmetic. O
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Lemma 12.6 (Kaimonovich—Vershik-Madiman inequality). If n > 0 and X,Y7,...,Y,, are
jointly independent G-valued random variables, then

H

X+zn:Yi]—[H zn: H[X +Y;] — H[X]).

1=1 i=1

Proof. This is trivial for n = 0,1, while the n = 2 case is . Now suppose

inductively that n > 2, and the claim was already proven for n — 1. By a further application
of i;emma 3.21) one has

HF+§E
i1

By induction hypothesis one has

<H[X +Y,] — H[X].

n—1
—H [X +YY,
i=1

n—1 —1
[Hl)uZYi —H[X Z (X +Y;] — H[X].
i=1 1=1
Summing the two inequalities, we obtain the claim. O

Lemma 12.7 (Kaimonovich—Vershik—-Madiman inequality, II). If n > 1 and X,Y7,...,Y,
are jointly independent G-valued random variables, then

d[X; Y<

d[X; Y.

LM:

Proof. Applying i:emma 12. a with all the Y; replaced by —Y;, and using and

emma 3.11f, we obtain after some rearranging

XD Y4 S Y~ HX) < 3 (A Y+ S (Y] - HIX))).
From we have

n

HY Y] > H[Y]

i=1

for all 4; subtracting H[X] and averaging, we conclude that

HIY ] - HIX) > LS hy -
=1 i=1

and thus
d|X Y] < d[X;Y, H[Y;] — H[X]).
[ ; J_m [X; Y] + ——(H[Y;] = HIX])
Fromwe have
H[Y;] — H[X] < 2d[X;Y}]
Since 0 < "2—;1 < %7 the claim follows. O
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Lemma 12.8 (Kaimonovich—Vershik-Madiman inequality, III). Ifn > 1 and X,Y7,....Y,
are jointly independent G-valued random variables, then

[ oy ($5] o)

1=1

Proof. From one has
l-x+ 3o S
i=1 i=1
The claim then follows from and some elementary algebra. O

Lemma 12.9 (Comparing sums). Let (X;)i<;<,, and (Y;)1<j< be tuples of jointly inde-
pendent random variables (so the X'’s and Y ’s are also independent of each other), and let
f:{1,...,01} = {1,...,m} be a function, then

YY) < Z +Z Y = Xy5)] = HIX )

Jj=1 i=

Proof. Write W := Zzl X,;. From we have

l l

HIY_ Y < H=W + 3 )

J=1 J=1

while from one has

H-W + > Y] < H-W]+ zl: H-W +Y;] — H[-W].

From one has
H=W + Y] = H-W] < Hl=X 5 + Y] - W= X0
The claim now follows from and some elementary algebra. O

Lemma 12.10 (Sums of dilates I). Let X,Y, X’ be independent G-valued random variables,
with X' a copy of X, and let a be an integer. Then

n

[-X +Y;]+H — H[Y;].

HIX — (a+1)Y] < HX —aY] + H[X — Y — X'] — H[X]

and
HX - (a—1)Y] <HX —aY]+HX -Y — X’] — H[X].

Proof.

From we have
H(X -Y)—aY]<H[(X -Y) = X'+ HX —aY] —HX']
which gives the first inequality. Similarly from we have
H(X+Y)—aY]<H[(X+Y)— X'+ HX —aY]—HX]

which (when combined with ) gives the second inequality. O
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Lemma 12.11 (Sums of dilates II). Let X,Y be independent G-valued random variables,
and let a be an integer. Then

HX — aY] — H[X] < 4]ald[X;Y].
Proof. From one has
HY — X + X'] — H[Y — X] < H[Y + X'] — H[Y] = H[Y + X] — H[Y]

which by gives

HX — Y — X'] — H[X] < d[X; Y] + d[X; Y]
and hence by

HX — Y — X'] — H[X] < 4d[X;Y].
From we then have
HIX — (a+1)Y] < H[X — a¥] + 4d[X; Y]
and the claim now follows by an induction on |a. O
We remark that in the paper [GGMT2024] the variant estimate
HLX — a¥] — H[X] < (4 -+ 10[log, lol)d[X; ]

is also proven by a similar method. This variant is superior for |a| > 9 (or |a| = 7); but we
will not need this estimate here.

12.3 Multidistance

We continue to let G be an abelian group.

Definition 12.12 (Multidistance). Let m be a positive integer, and let X,,; = (X;)1<;<m
be an m-tuple of G-valued random variables X;. Then we define

m_ 1 ™ .
D[Xp,] :=H]D_ X,] - o > HIX,
i=1 i=1
where the )21- are independent copies of the X;.

Lemma 12.13 (Multidistance of copy). If X,,) = (X;)1<i<p and Y, = (Y;)1<i<p, are such
that X; and Y; have the same distribution for each i, then D[X,,] = D[Y},,].

Proof. Clear from Lemma @ O

Lemma 12.14 (Multidistance of independent variables). If X,,; = (X;)1<;<p,, are jointly
independent, then D[X,,] = [H[Zzl X,]-+ Zzl H[X;]-

Proof. Clear from definition. O

Lemma 12.15 (Nonnegativity). For any such tuple, we have D[X,,] > 0.
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Proof. From one has
m ~ ~
HY K> HIE)
i=1

for each 1 < i < m. Averaging over i, we obtain the claim. O

Lemma 12.16 (Relabeling). If ¢ : {1,...,m} — {1,...,m} is a bijection, then D[X,,] =
D[(X () 15<ml-
Proof. Trivial. O

Lemma 12.17 (Multidistance and Ruzsa distance, I). Let m > 2, and let Xim) be a tuple
of G-valued random variables. Then

1<j,k<m:j+k

Proof. By Lemma 3.1d, lLemma 12.1j we may take the X, to be jointly independent. From
k}orollarx 3.§, we see that for any distinct 1 < j, k < m, we have

m

HLX; + X5 <HD X)),

and hence by
UL 1 1

A X, <HY X - FHIX,] - SHIX,]

Summing this over all pairs (j, k), 7 # k and using Lemma , we obtain the claim. [
Lemma 12.18 (Multidistance and Ruzsa distance, II). Let m > 2, and let X, be a tuple

of G-valued random variables. Then

> d[X;: X;] < 2mD[X,].

=1

Proof. From we have d[X;; X;] < 2d[X;;—X,], and applying this to every
summand in , we obtain the claim. O

Lemma 12.19 (Multidistance and Ruzsa distance, III). Let m > 2, and let X, be a tuple
of G-valued random variables. If the X, all have the same distribution, then D[X,] <
md[X;; X;] for any 1 <i<m.

Proof. By lLemma 3.1d7 lLemma 12.13| we may take the X, to be jointly independent. Let
X, be a further independent copy of the X,. From , we have

X+ 30X~ X, < 3 HX, — X, — H[-X,]

and hence by tLemma 3.1] and tLemma 3.11]

H[—X, + iXi] — H[X] < md[X,, X,).
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On the other hand, by we have

[H[Z X;] <H[-X, + sz]
i=1 i=1
and the claim follows. O

Lemma 12.20 (Multidistance and Ruzsa distance, IV). Let m > 2, and let X, be a tuple
of independent G-valued random variables. Let W := 221 X,;. Then

d[W; —W] < 2D[X,].

Proof. Take (X;),<;<,, to be further independent copies of (X;);-;c,, (which exist by
emma 3.7). and write W’ := 2111 X;. Fix any distinct a,b € I.
From [Lemma 3.2!] one has

HW + W] < HW] + H[X, + W] —H[X,] (12.1)
and also
HX, + W' <H[X, + X,] + HW’'] — H[X,)].
Combining this with () and then applying we have
HW + W] <2H[W] + H[X, + X,] — H[X,] — H[X,]
< 3H[W] — H[X,] — H[X,].

Averaging this over all choices of (a,b) gives H[W] + 2D[X|,,], and the claim follows from
Lo 311 -

Proposition 12.21 (Vanishing). If D[X|,,] =0, then for each 1 <i < m there is a finite
subgroup H; < G such that d[X; UHi] =0.

Proof. From tLemma 12.18 and Lemma 3.151 we have d[Xj; Xj] =0forall 1 <j<m. The

claim now follows from tzorollarz 4.6. O

With more effort one can show that H; is independent of ¢, but we will not need to do
so here.

12.4 The tau functional

Fix m > 2, and a reference variable X° in G.

Definition 12.22 (n). We set n:=

1
32m3 -
Definition 12.23 (7-functional). If (X;) <<, is a tuple, we define its T-functional

m

T[(Xi)1<icm] = DI(Xi)1<icm] + Uzd[Xﬁ XV

=1

Definition 12.24 (7-minimizer).
A T-minimizer is a tuple (X;)1<;<,, that minimizes the T-functional among all tuples of
G-valued random variables.
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Proposition 12.25 (Existence of 7-minimizer). If G is finite, then a T-minimizer exists.

Proof. This is similar to the proof of . O

Proposition 12.26 (Minimizer close to reference variables). If (X;),<;<,, is a T-minimizer,
then 3" d[X;; X°] < 2de[XO;XO].

Proof. By Definition 12.24 we have
T[(Xi)1<icm] < T[(Xo)lgigm]

and hence by lDeﬁnition 12.231 and lLemma 12.151

nzd[Xi;XO] < D[(X°)1cicpm] +md[X°; X°].
i—1

The claim now follows from . O

Lemma 12.27 (Lower bound on multidistance). If (X;),<;<,, 9 a T-minimizer, and k :=
D[(X;)1<i<m], then for any other tuple (X;),<;<,,, one has

kiD[(X/ 1<z<m = Z X X/

Proof. By [Definition 12.24 we have
(X 1<icm] < TIXD1<icm]

and hence by [Definition 12.23
k+ nZd X X0 < DI(X])yciom] + 0 dIX} XO).
i=1

On the other hand, by we have
d[X{; X°] < d[X;; X°) + d[X; X]].
The claim follows. O

Definition 12.28 (Conditional multidistance). If Xp,,) = (X;)1<i<pm and Y, = (V) 1252,
are tuples of random variables, with the X, being G-valued (but the Y; need not be), then we
define

DXl = 3 ( TT o)) DOV =i (122)
(Yi)1<icm “1SiSm
where each y; ranges over the support of py. for 1 <i < m.

Lemma 12.29 (Alternate form of conditional multidistance). If the (X,,Y;) are indepen-
dent,

1 m
DX, Zx gl = = DMV (12.3)
i=1
Proof. This is routine from and Definitions and . O
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Lemma 12.30 (Conditional multidistance nonnegative). If Xj,,; = (X;)1<i<; and Yy, =
(Y;)1<i<m are tuples of random variables, then D[X,,|Y},,] = 0.

Proof. Clear from tLemma 12.1ﬂ and lDeﬁnition 12.2?47 except that some care may need to
be taken to deal with the y; where py. vanish. O

Lemma 12.31 (Lower bound on conditional multidistance). [ ( Xi)i<i
and k := D[(X;)1<i<m]), then for any other tuples (X]),<ic, and (Y;);
valued, one has

18 a T-minimizer,

< With the X| G-

<m
1<

m
k— D[(X/)1<z<m| 1<1<m = Z X X/

Proof. Immediate from lLemma 12. 27| lLemma 12. 2d and tDeﬁm‘mon 3. ld O

Corollary 12.32 (Lower bound on conditional multidistance, II). With the notation of the
previous lemma, we have

k— DIX/, [ Vi) <03 dIX, 0 X[V (12.4)

i=1
for any permutation o : {1,...,m} = {1,...,m}.
Proof. This follows from lLemma 12.3]] and lLemma 12.1d. O

12.5 The multidistance chain rule

Lemma 12.33 (Multidistance chain rule). Let m: G — H be a homomorphism of abelian
groups and let X, be a tuple of jointly independent G-valued random wvariables. Then
D[ X)) is equal to

m m

D[X |7 (X)) + D[ (X)) + ”[Z X; o m( X)) | W(Z X;)] (12.5)

i=1 =1
where m( X)) = (1(X;))1<i<m-

Proof. For notational brevity during this proof, write S := Zzl X;.
From [Lemma 2.2a and [Lemma 2.9, noting that 7(S) is determined both by S and by
(X)), we have

I[S : (X)) |7(S)] = HST + Hm (X )] — HIS, 71(X )] — H[7 ()],
and by the right-hand side is equal to

H[S] = HS |7 (Xp)] — Hm(5)].

Therefore,
H[S] = HS|m(X ()] + HIw(S)] + 0[S = 7(Xp,))[7(5)]- (12.6)

From a further application of lLemma 2.13 and lLemma 2.j we have

H[X;] = HX; [ 71(X)] + Hr(X;)] (12.7)

for all 1 < 42 < m. Averaging (12() in ¢ and subtracting this from (), we obtain the
claim from Definition 12.12. O
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We will need to iterate the multidistance chain rule, so it is convenient to observe a
conditional version of this rule, as follows.

Lemma 12.34 (Conditional multidistance chain rule). Let m: G — H be a homomorphism
of abelian groups. Let I be a finite index set and let X, be a tuple of G-valued random
variables. Let Y}, be another tuple of random variables (not necessarily G-valued). Suppose
that the pairs (X,,Y;) are jointly independent of one another (but X, need not be independent
of Y;). Then

DX Y] = DXy | (X)), Y] + DI (X)) [ Y]
+ ”[Z X, (X)) ]w(ZXi),Y[m]]. (12.8)
=1 )

1=

—

Proof. For each y, in the support of Py, apply with X, replaced by_the
conditioned random variable (X;|Y; = y;), and the claim ([12.§) follows by averaging ([12.5)

in the y; using the weights py. . O
We can iterate the above lemma as follows.
Lemma 12.35. Let m be a positive integer. Suppose one has a sequence
G, —» G, 41— ..>G —G,={0} (12.9)
of homomorphisms between abelian groups G, ...,G,,, and for each d = 0,...,m, let 7y :

G,, = G, be the homomorphism from G, to G, arising from this sequence by composition
(so for instance m,, is the identity homomorphism and 7, is the zero homomorphism). Let
Xim) = (Xi)1<i=m be a jointly independent tuple of G,,-valued random variables. Then

D[ X)) = iD[Wd(X[m]) | 71 (X))
(12.10)

3

+ ] ”[Z X o mg(Xpm) | Wd(ZXi)aqu(X[m])}

d=1 %

In particular, by ,
D[X,,] Z;D[Wd(X[m])qu(X[m])]
-1
+ ”[Z Xy (X)) | 771(2 X))l (12.11)
Proof. From (taking Y = 7Td71(X[m]) and m = 7, there, and noting that

(X)) determines Vy,,) we have
DXy | 7g-1 (X)) = DXy | 70 (Xpp))] + DImg (X)) | a1 (X))

+ I][Z Xz : Trd(X[nL]) ’ Trd(z Xi)77rd—1 (X[m])]
i=1 =1

for d = 1,...,m. The claim follows by telescoping series, noting that D[X|,,[mo(X;,)]
D[X[m]] and that 7Tm<X[m]> = Xj] (and also 7, (>, X;) = >, X;).

o
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In our application we will need the following special case of the above lemma.

Corollary 12.36. Let G be an abelian group and let m > 2. Suppose that X; ;, 1 < 14,5 <m,
are independent G-valued random variables. Then
”[(Z 'L,J)]_l (Z Xi,j)izl | ZZXz j}
= Jj= =1 j=1
m—1
< Z (D[(Xz,j):il} - D[(Xz,j)zfl ’ (Xz j +oet Xz m)ﬁl])
j=1

where all the multidistances here involve the indexing set {1,...,m}.

Proof. In Lemma 12.35 we take G, := G¢ with the maps 7,: G™ — G% for d = 1,...,m
defined by
Tg( Ty, ey Tpy) 7= (T, oo, Tg_1,Tg + -+ Ty)

with 7y = 0. Since 7;_;(z) can _be obtained from m,(z) by applying a homomorphism, we
obtain a sequence of the form ([12.9).
Now we apply Lemma 12.33 with I = {1,...,m} and X, = (X, ;)]

7y Using joint
independence and [Corollary 2.24, we find that

D[] = 3 DX )iz

On the other hand, for 1 < j < m—1, we see that once 7;(X;) is fixed, 7, (X;) is determined
by X, ; and vice versa, so

D[Wj+1(X[m]) | 7rj(X[m]ﬂ = D[(Xi,j)lgigm | 7Tj(X[m])]-
Since the X ; are jointly independent, we may further simplify:
DI(X; j)1<icm | Tj(Xpmp] = DUX; j)1<izm | (X j+ -+ X ) 1<icm]-

Putting all this into the conclusion of [Lemma 12.35, we obtain

m m—1
ZD[(Xi,j>1§i§m] = D[(X; )1<icm | (Xij+ -+ Xi p)1<icml
=1 =1

+ D[(Z XZ’J)1<z<m]

j=1
+ I][(Z X1 j)]_l ; (Z Xi,j)lzl | ZXi,j]
i=1 j=1 i=1 j=1
and the claim follows by rearranging. O
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12.6 Bounding the mutual information

As before, G is an abelian group, and m > 2. We let X|,,; = (X;)/2; be a 7-minimizer.

Proposition 12.37 (Bounding mutual information). Suppose that X 1 <4, <m, are
jointly independent G-valued random variables, such that for each j =1,...,m, the random
variables (X, ;)i coincide in distribution with some permutation of Xim)- Write

J = ”[(Z Xi,j)j:1 : (Z Xi,j)izl ‘ ZXi,j]'
i=1 j=1 i=1 j=1
Then
J < m(4dm + 1)nk. (12.12)

Proof. For each j € {1,...,m} we call the tuple (X; ;)i a column and for each i € {1,...,m}
we call the tuple (Xm»)}r; 1 a row. Hence, by hypothesis, each column is a permutation of

Xy = (XadiZy.
From [Corollary 12.3G we have

m—1
J<Y Aj+B, (12.13)
=1
where
Aj = D[(X ,])?lﬂ - D[(Xi,j);il | (Xij +ot Xi, )711]
and .
B:=D[(X, )] = D> X)) -
j=1

We first consider the A, for fixed j € {1,...,m —1}. By and our hypothesis

on columns, we have

D[(X; ;)i%] = DX;)i%] = k.
Let 0 = 0;: I — I be a permutation such that X; ; = X, and write X; := X, ; and

i,
Y, = Xi,j 4ot Xi’m. By Corollary 12.32, we have

4,J

Ay < dIX 5 XX+ X)) (12.14)
i=1
We similarly consider B. By applied to the m-th column,
D[(Xiﬂn)?il] = D[X[m]] =k.

For 1 < i < m, denote the sum of row ¢ by

m
V= ZXi,j§

Jj=1

if we apply Corollary 12.39 again, now with Xo) = Xim: X/ :=V,, and with the variable

Y, being trivial, we obtain

B<n) dX;,.; V. (12.15)



It remains to bound the distances appearini in |i 2.1#' and (lng) further using Ruzsa

calculus. For 1 <j<m—1and 1<i<m, by we have

dIX; ;5 X 51X+ + X ] < dX 55 X ]

+ 3 (HXG 4+ X = HIX o+ + X, 0)

For each ¢, summing over j =1,...,m — 1 gives
m—1
Z dIX; 55 X 51X 5+ + Xl
j=1
m—1 1
< 371X, 55 X, ]+ 5 (HIV] = HIX, ). (12.16)
j=1
On the other hand, by (since X, ,, appears in the sum V;) we have
1
(X3 Vil < d[X; 5 Xi ] + 5 (V] = HXG a])- (12.17)

Combining (), () and () with (i2.1a) and (lZlﬂ) (the latter two summed

over 1), we get

L9< 3 X X, )+ D] — X )
:mid[Xi;Xi] +f:u4m] —i[H[Xi]. (12.18)

By (with f taking each j to the index j* such that X ; is a copy of X ;) we
obtain the bound

m m

HV;] < [H[Z X1+ Zd[xi,jé X, il
j=1 j=1
Finally, summing over i and using D[X|,,]] = k gives
D OHVI =D HIX] < D dIX i X )+ mk
i=1 i=1 2,7=1

where in the second step we used the permutation hypothesis. Combining this with ([L12.1§)
gives the

J < 2nm (Z d[X;; Xi]) + mk.
=1

The claim () is now immediate from . O

12.7 Endgame

Now let m > 2, let G be an m-torsion abelian group, and let (X;),-;,, be a T-minimizer.
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Definition 12.38 (Additional random variables). By a slight abuse of notation, we identify
Z/mZ and {1,...,m} in the obvious way, and let Y; ; be an independent copy of X; for

i,7 € Z/mZ. Then also define:
W= > Y

i,j€Z/mZ
and
Zy = Z in‘,ja Zy = Z jYi,ja Zg = Z (_i_j>Y;,j'
i,jeZ/mZ i,jeZ/mZ i,jeZ/mZ

The addition (—i — j) takes place over Z/mZ. Note that, because we are assuming G is
m-torsion, it is well-defined to multiply elements of G by elements of Z/mZ. We will also
define for i,j,r € Z/mZ the variables

Pi= Y Y, Q= Y Y, R:= > Y, (12.19)
jez/mz i€Z/mz i,j€Z/mZ
itj=—r1

Lemma 12.39 (Zero-sum). We have
Zi+Zy+2Z3=0 (12.20)
Proof. Clear from definition. O
Proposition 12.40 (Mutual information bound). We have
0WZy : Zy [ W, W[ Zy 2 Z5 | W, N[22 Zg |[W] <t

where
t:=m(4dm + 1)nk. (12.21)

Proof. We analyze these variables by lProposition 12.37‘ in several different ways. In the first
application, take X; ; = Y; ;. Note that each column (Xm»)?:bl is indeed a permutation of

X4, ..., X,,; in fact, the trivial permutation. Note also that for each i € Z/mZ, the row sum
is

m

Y Xij= ) Y=k

j=1 jez/mz

and for each j € Z/mZ, the column sum is

0

Il
—

K2

Xij= >, Y,;=Q;
ieZ/mz

Finally note that Z;ﬂjzl X. . =W. From tProposition 12.37| we then have

.3

W(P;)icz/mz * (@) jez/mz W] <t,

with ¢ as in () Since Z, is a function of (FP;), by (E2.1a)7 and similarly Z, is a
function of (QJ) jez/mz> 1t follows immediately from [Lemma 12.4 that

112, : Zy| W] < .
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In the second application of IProposition 12. 37| we instead consider X; ;=Y. Again,
for each fixed j, the tuple (X ;), is a permutation of Xy, ..., X,,. This time the row sums
for i € {1,...,m} are

ZX ,,] Z Y; —3d = R
jeZ/m7
Similarly, the column sums for j € {1,...,m} are
D Xig= 2 Y=
i—1 i€Z/mz
As before, Z i | Xi;=W. Hence, using ( |12 IQ) and ILeInma 12. 4 again, IProposmon 12. 31
tells us

1[Zs : Zy | W] < W(R,)icz/mz * (@) jezjmz |W] <t
In the third zabpplicationEI of IProposition 12.3ﬂ, take X;’ =Y, The column and row

9,j—1"
sums are respectively
S xi= 3 V- n

JjEZ/mZ
and
Z Z YJ i~ 7"
i=1 i€Z/mZ

Hence, IProposition 12.3ﬂ and ILemma 12.4 give
1[Z, : Z3 | W] <W(P,)icz/mz * (By)jez/mz | W] < 8,

which completes the proof. O

Lemma 12.41 (Entropy of W). We have HW] < (2m — 1)k + L Zzl H[X;].
Proof. Without loss of generality, we may take X,,..., X, to be independent. Write S =

Zzl X,;. Note that for each f € Z/mZ, the sum Q; from () above has the same

distribution as S. By |[Lemma 12.¢ we have

H > Q] <H[S] Z([Qﬁ@] H[S])

jeZ/mZ

Kv

= H[S] + (m — 1)d[S; —S].

By [Lemma 12.2(, we have

d[S;—S] < 2k (12.22)

and hence

From Definition 12.12 we have

1 m
H[S| =k + — H[X, 12.23
(8] = ko 0 D M (12.23)
and the claim follows. O

n fact, by permuting the variables (Y; ;)i jez/mz, one can see that the random variables (W, Z;, Z5)
and (W, Z,, Z3) have the same distribution, so this is in some sense identical to — and can be deduced from
— the first application.
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Lemma 12.42 (Entropy of Z,). We have H[Z,] < (8m? — 16m + 1)k + L= Zzl H[X,].
Proof. We observe

HIZ) =H D 5@l
JjeZ/mZ
Applying one has
m—1
H[Z,] < Z HQ; +iQ;] — (m — 2)H[S].
i—2

Using ILemma 12.1]] and (IIQZﬂ) we get

H[Z,] < H[S] + 4m(m — 2)d[S; —5]

H[S] + 8m(m — 2)k.
Applying () gives the claim. O
Lemma 12.43 (Mutual information bound). We have I[W : Z,] < 2(m — 1)k.

Proof. From we have I[W : Zy] = H[W] — H[W|Z,], and since Z, = > ' jQ;
and W =3", Q.

Hence, by [Lemma 12.41,

INIA

W : Zy) < HW] —H[S] < 2(m — 1)k,
as claimed. O
Lemma 12.44 (Distance bound). We have 3" d[X;; Zo|W] < 4(m® — m?)k.

Proof. For each i € {1,...,m}, using (noting the sum Z, contains X, as a

summand) we have
d[X;: Zo] < d[X;; X] + 5(H[Z,] — HX}]) (12.24)

and using [Lemma 3.24 we have

d[X,; Z,|W] < d[X;: Z,] + 3[W  Z,).

Combining with (|12.24I) and ILemma 12.431 gives

X Zo|W] < d[X;: X] + 5(H[Z,] — HX]) + (m — Dk

Summing over ¢ and applying gives

D d[X; Z,|W] <Y d[X;; X))+ m(8m? — 16m + 1)k/2 + m(m — 1)k.
=1 i=1

Finally, applying (and dropping some lower order terms) gives the claim. [
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Lemma 12.45 (Application of BSG). Let G be an abelian group, let (T}, Ty, Ty) be a G3-
valued random variable such that Ty + T, + T = 0 holds identically, and write

6= [Ty : T] + )Ty : T3] + [T : T).

Let Yy, ..., Y, be some further G-valued random variables and let o > 0 be a constant. Then
there exists a random variable U such that

d[U: U]+a;dm;U] < (2+%)5+a;dm;g]. (12.25)

Proof. We apply with X =T, and Y =T,. Since T + 1, = —Tj3, we find that
ZPT?,(Z)d[TI | Ty =21, | T5=2]

< BI[TY = To] + 2H[T5] — H[T,] — H[T3]
= [Ty : T + U[T; : T3] + U[T; : T3] = 6,

where the last line follows from by observing

[H[ThTﬂ = [H[TDTS] = [H[T2aT3] = [H[TUTQaT?)]

(12.26)

since any two of T},7,,T; determine the third.
By (@) and the triangle inequality,

ZPTg,(Z)d[Tz | T3=2T,[Ty=2] <20

and by , for each Y,
ZPTB (2)d[Y;; Ty | T3 =2]

1
=

1)
=d[Y;; Ty | T5] < d[Y; To] + 5 [Ty« Ts] < d[Y;; To] + 3

Hence,
S pr. (2) (d[T2|T3=z;T2 Ty=o 40 dY:T, |T3:z1)
z =
an n
< (245 )0 +ad dYi Ty,
i=1

and the result follows by setting U = (T, | T3 =z) for some z such that the quantity in
parentheses on the left-hand side is at most the weighted average value. O

Proposition 12.46 (Vanishing entropy). We have k = 0.

Proof. For each value W = w, apply ILemma 12.4& (and lLemma 12.3d) to

Ty =(Z,|W=w), Ty = (Z,|W=w), Ty = (Zz| W =w)
with Y; = X, and o = n/m. Write

Oy =Ty : Tp] + NI : Ty] + [T : T

w
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for this choice, and note that
0, = ZPW(w)(Sw =0[Z,: Zy W]+ 1[Z, : Zg | W]+ 12y : Zg | W]
w

< 3m(4m + 1)nk (12.27)

by IPropc sition 12.4d. Write U, for the random variable guaranteed to exist by ,

so that ([12.25) gives

am =z
. < R Lt —_ . . .
AUw U < (24557 )80 + 0 3 (X T = dIXs V) (12:28)
Let (U,); denote the tuple consisting of the same variable U, repeated m times. By
D[(U,);] < md[U,;U,]. (12.29)
On the other hand, from one has

DU, = k—nY_ dX;U,]. (12.30)

i—1

Combining (), () and () and averaging over w (with weight py, (w)), and

recalling the value o = n/m, gives

m(2+ g)a +77;d[Xi;ZQ\W] > k

since the terms d[X; U,,] cancel by our choice of . Substituting in ILemma 12.44| and (|12.27|)7
and using the fact that 2 + 7 < 3, we have

3m2(4m + 1)(2 + g)nk +n8(m3 —m?)k > k.

From Definition 12.22 we have we have
n

3m2(4m +1)(2 + 5)77 +n8(m3 —m?) < 1

and hence k£ < 0. The claim now follows from . O

12.8 Wrapping up

Theorem 12.47 (Entropy form of PFR). Suppose that G is a finite abelian group of torsion
m. Suppose that X is a G-valued random variable. Then there exists a subgroup H < G
such that

d[X;Uy] < 64m3d[X; X].

Proof. Set X° := X. By [Proposition 12.25, there exists a 7-minimizer Xim) = (Xi)1<izm-
By IProposition 12.4d, we have D[X[m]] = 0. By |@roposition 12.2a and the pigeoﬁﬁole
principle, there exists 1 <4 < m such that d[X,; X] < %d[X; X]. By IProposition 12.2]], we
have d[X,; Uy] = 0 for some subgroup H_< G. hence by Lemma 3.1§ we have dUy; X] <
%d[X; X]. The claim then follows from |ﬂ Definition 12.22. O
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Lemma 12.48. Suppose that G is a finite abelian group of torsionm. If A C G is non-empty
and |A+ A| < K|A|, then A can be covered by at most K281 A|Y/2 /|H|'/? translates of
a subspace H of G with

|H|/|A| € [IK—256m° [g256m?], (12.31)

Proof. Repeat the proof of , but with [Theorem 12.47 in place of .

Because of the lack of 2-torsion, one has to use the Ruzsa triangle inequality to bound
d[U,U] by 2d[U,—U], costing an additional factor of 2 in the estimates. O

Theorem 12.49 (PFR). Suppose that G is a finite abelian group of torsion m. If A C G
is non-empty and |A+ A| < K|A|, then A can be covered by most mK2*™°+1 translates of
a subspace H of G with |H| < |A|.

Proof. Repeat the proof of , but with in place of . O
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Chapter 13

Further improvement to
exponent

13.1 Kullback—Leibler divergence

In the definitions below, G is a set.

Definition 13.1 (Kullback—Leibler divergence). If X,Y are two G-valued random variables,
the Kullback—Leibler divergence is defined as

Dy (X[Y) ==Y P(X =z)log m.

Lemma 13.2 (Kullback—Leibler divergence of copy). If X’ is a copy of X, and Y’ is a copy
of Y, then Dy (X'||Y') = Dy (X||Y).

Proof. Clear from definition. O

Lemma 13.3 (Gibbs inequality). Dy (X|Y) > 0.

Proof. Apply on the definition. O

Lemma 13.4 (Converse Gibbs inequality). If Dy (X|Y) =0, then Y is a copy of X.

Proof. Apply Lemma 1.3 N

Lemma 13.5 (Convexity of Kullback-Leibler). If S is a finite set, > _ w, =1 for some
non-negative wy, and P(X =z) =3 _wP(X,=2), P(Y =z)=3_ _ wP(Y, =) for
all z, then

Dy (X[Y) < ZwsDKL(Xs”Ys)-

seS

Proof. For each z, replace log Plz,(();ff)) in the definition with log % for each s, and

apply [Lemma 1.9, N

Lemma 13.6 (Kullback-Leibler and injections). If f : G — H is an injection, then
Dy (fF(XNf(Y)) = Dg (X]Y).

Proof. Clear from definition. O
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Now let G be an additive group.

Lemma 13.7 (Kullback-Leibler and sums). If X,Y,Z are independent G-valued random
variables, then
D (X +Z|Y +Z) < Dy (X[Y).

Proof. For each z, Dy, (X+2[Y+2) = Dy (X[Y) by Lemma 13.d. Then apply
with w, = P(Z = 2). O

Definition 13.8 (Conditional Kullback-Leibler divergence). If X,Y,Z are random vari-

ables, with X, Z defined on the same sample space, we define

Dy (X|1Z]Y) - ZP = z)Dg (X]|Z = 2)|Y).

Lemma 13.9 (Kullback—Leibler and conditioning). If X,Y are independent G-valued ran-
dom variables, and Z is another random variable defined on the same sample space as X,
then

Dy (X[Z)|Y) = D (X[Y) + H[X] — H[X][Z].

Proof. Compare the terms correspond to each = € G on both sides. O
Lemma 13.10 (Conditional Gibbs inequality). Dy ((X|W)|Y) > 0.
Proof. Clear from Definition and Lemma . O

13.2 Rho functionals

Let G be an additive group, and let A be a non-empty subset of G.

Definition 13.11 (Rho minus). For any G-valued random variable X, we define p~(X) to
be the infimum of Dy (X|Uas+T), where Uy is uniform on A and T ranges over G-valued
random variables independent of U 4.

Definition 13.12 (Rho plus). For any G-valued random variable X, we define p™(X) :=
p(X) +HX) = H(U,).

Lemma 13.13 (Rho minus non-negative). We have p~(X) > 0.

Proof. Clear from Lemma . O

Lemma 13.14 (Rho minus of subgroup). If H is a finite subgroup of G, then p~ (Uy) =
log |A| —logmax, |A N (H +t)].

Proof. For every G-valued random variable T' that is independent of Y,

1/|H\
Dy (Ug|lU T) E —log(P[U TeH

by . Then observe that

—log(PlU,+T € H)) =—1log(P[Uy € H—-T)) > —log(rtaaé(P[UA € H+1]).
B

This proves >.
To get the equality, let t* := argmax, |A N (H + t)| and observe that

P~ (Uy) < Dgp(UyllUg + (Uy —t)) = log |A] — logmtaXIA N (H +1)|.
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Corollary 13.15 (Rho plus of subgroup). If H is a finite subgroup of G, then p*(Uy) =
log |H| —logmax, |AN (H +t)].

Proof. Straightforward by definition and . O
Definition 13.16 (Rho functional). We define p(X) := (p™(X) + p~(X))/2.
Lemma 13.17. We have p(U,) = 0.

Proof. p~(U,) <0 by the choice T = 0. The claim then follows from . O

Lemma 13.18 (Rho of subgroup). If H is a finite subgroup of G, and p(Uy) < r, then
there exists t such that |AN (H +t)| > e "/|A||H|, and |H|/|A| € [e72",e?].

Proof. The first claim is a direct corollary of hiemma 13.14 and Corollary 13.15. To see the
second claim, observe that Lemma 13.13 and (Corollary 13.15 imply p~(Uy), p™(Ugy) > 0.

Therefore

[H(Uy) = H(Uy)| = |p"(Uy) = p~ Up)| < p~ (Ug) + p" (Uy) = 2p(Uy) < 2,
which implies the second claim. O

Lemma 13.19 (Rho invariant). For any s € G, p(X + s) = p(X).

Proof. Observe that by ,

O
Lemma 13.20 (Rho continuous). p(X) depends continuously on the distribution of X.
Proof. Clear from definition. O
Lemma 13.21 (Rho and sums). If X,Y are independent, one has
p(X+Y)<p (X)

PHX +Y) < pH(X) + HIX + Y] — HIX]
and

p(X+Y) < p(X)+ %([H[X +Y]—H[X)).
Proof. The first inequality follows from . The second and third inequalities are
direct corollaries of the first. O

Definition 13.22 (Conditional Rho functional). We define p(X|Y) := Zy PY =y)p(X|Y =
Y)-
Lemma 13.23 (Conditional rho and translation). For any s € G, p(X + s|Y) = p(X|Y).

Proof. Direct corollary of . O

Lemma 13.24 (Conditional rho and relabeling). If f is injective, then p(X|f(Y)) =
p(X]Y).
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Proof. Clear from the definition. O

Lemma 13.25 (Rho and conditioning). If X, Z are defined on the same space, one has
p~(X|2) < p(X) + HX] — H[X| 2]

p(X|Z) < p*(X)

and

1
p(X12) < p(X) + L (HIX] ~ H[X]Z]).
Proof. The first inequality follows from . The second and third inequalities are
direct corollaries of the first. O

The following lemmas hold for G = F7.

Lemma 13.26 (Rho and sums, symmetrized). If X,Y are independent, then
(X +Y) < 2 (p(X) + p(Y) + d[X; Y)).

Proof. Apply for (X,Y) and (Y, X) and take their average. O

Lemma 13.27 (Rho and conditioning, symmetrized). If X, Y are independent, then

N | =

p(XIX +Y) < S(p(X) + p(¥) + d[X; Y]).

N | =

Proof. First apply to get p(X|X +Y) < p(X) + I(HX + Y] — H[Y]), and
p(Y|X +Y) < p(Y) + 3 (H[X + Y] — H[X]). Then apply to get p(Y|X +Y) =
p(X|X +Y) and take the average of the two inequalities. O

13.3 Studying a minimizer
Set n < 1/8. In this section, consider G = F}.
Definition 13.28. Given G-valued random variables X,Y , define
PIX; Y] = d[X; Y]+ n(p(X) + p(Y))
and define a ¢-minimizer to be a pair of random variables X, Y which minimizes ¢[X;Y].
Lemma 13.29 (¢-minimizers exist). There exists a ¢-minimizer.
Proof. Clear from compactness. O

Let (X, X5) be a ¢-minimizer, and )Z’l, )22 be independent copies of X, X, respectively.
Similar to the original proof we define

L= IX + X X 4 X)X+ X+ X, + X0, L = 0X, 4+ X, X+ XX+ X+ X+ X)),

First we need the ¢-minimizer variants of tLemma 6.1j and tLemma 6.1d.

Lemma 13.30. I; < 2nd[X; X,]
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Proof. Similar to : get upper bounds for d[Xl,XQ] by ¢[X; X,] < o[X, +
X,; X, + X,] and (Z)[Xl,XQ] < ¢[X1|X1 + X,; X,| X, + X,], and then apply Lemma 6.8 to
get an upper bound for I;. O

Lemma 13.31. d[X;; X ]| + d[Xy; Xo] = 2d[X; Xo] + (I, — I;).

Proof.. Compare § with the identity obtained from applying on

(XlaX15X27X2) O
Lemma 13.32. I, < 2nd[X; X,] + 1 (2nd[Xy; Xo] — Iy).

Proof. First of all, by ¢[X ;5 X5] < ¢[X,+ X5 Xp+ X, 6[X15 Xo] < ¢[Xy| X, + X5 Xp| Xp+

X,], and the fibring identity obtained by applying on (X, X,, X,,X,), we have
I, < n(d[Xy; Xy]+d[X5; X,]). Then apply to get I, < 2nd[Xy; Xp]+n(l,— 1),
and rearrange. O

Next we need some inequalities for the endgame.

Lemma 13.33. If G-valued random variables T, T, T5 satisfy T} + Ty + T3 = 0, then

d[X1; Xp] < 3T = To] + 2H[T5] — H[Ty ] — H[T3)) + n(p(T1|Ts) + p(T5]T5) — p(X7) — p(Xy)).
Proof. Conditioned on every Ty = t, d[X: Xo] < d[T|Ty = ;15|15 = t] + n(p(Ty|Ty =
t) 4+ p(Ty|Ty = t) — p(X;) — p(X5)) by M Then take the weighted average
with weight P(T5 = ¢) and then apply ] to bound the RHS. O

Lemma 13.34. If G-valued random variables T, T, T5 satisfy T} + 1Ty + T3 = 0, then

d[Xy; X5] < Z 0T, - Tj] + g Z (p(Ti|Tj) + P(Tj|T¢) —p(X7) —p(Xy))

1<i<j<3 1<i<j<3

Proof. Take the average of over all 6 permutations of T}, T, T5. O

Lemma 13.35. For independent random variables Y;,Y,, Y5, Y, over G, define S :=Y; +
Yo+ Ys+Y,, T, =Y, +Y,, T,:=Y, + Y;. Then

}/17 }/2] + d[Y37Y4} + d[Yla Y3] + d[Y27}/4])

l\U\H

p(T1|T3, S) + p(T5|T1, S) ZP
Proof. Let T] :=Y; +Y,, Ty :=Y, +Y,. First note that
1
p(TY|T3, 5) < p(T1]S) + §U(T1 1y | S)

< §< T+ o1+ ST T 40T 5 T, | 5))

I/\

120000+ ANV ANV + ST T U T | 8))

by ILemma 13.25, lLemma 13.27|, lLemma 13.2d respectively. On the other hand, observe that

p(T1|Ty, S) = p(Yy + V5|15, Ty)

1 ’ 1 ’
*(P(Y1|T2) +p Y2|T2)> + §<d[y1|T2§ Y5|T5])

\ A

1 ’
*ZP Y17Y3]+d[Y27Y4])+§(d[Y1|T2§Y2|T2])-

\ /\
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by lLemma 13.24]7 ILemma 13.2d, lLemma 13.27| respectively. By replacing (Y7,Y;,Ys,Y,) with
(Y7,Y5,Y,,Y,) in the above inequalities, one has

LI, S) < 337 p(4) + G Vil s V) + 5T T 4T, + Ty | )

and
p(Ty|Ty, S) Z,o (d[Yy;Yy] + d[Y3;Yy)) + (d[Y1|T1;1@,|Tf]>.

Finally, take the sum of all four inequalities, apply on (Y1,Y,,Y;,Y,) and
(Y7,Y5,Y,,Y,) to rewrite the sum of last terms in the four inequalities, and divide the result
by 2. O

Lemma 13.36. For independent random variables Y,,Y,,Y5,Y, over G, define T} :=Y, +
Yo, Ty =Y, + Y, Ty =Yy + Yy and S : =Y, + Y, + Y5+ Y,. Then

> (p(TITy, S) + p(Ty|T, Zp < > Ay,
1<i<j<3 1<z<]<4

Proof. Apply Lemma on (Y,,Y,,Y,.Y,) for (i,5,k) = (1,2,3),(2,3,1),(1,3,2), and

R B

take the sum. O
Proposition 13.37. If X|, X, is a ¢-minimizer, then d[X,; X,] = 0.

Proof. Consider Ty := X, + Xy, Ty := X, + X, . Ty := X, + Xy, and S = X, + X, + X, + X,.
Note that T} + T, + T3 = 0. First apply on (Ty,T,,T;) when conditioned on

S to get

d[X1; X5] < Z 0T, Tj | S]+ g Z (P(Ti|TjaS) +P(Tj|TiaS) —p(X;) —p(Xy))
1<i<j<3 1<i<j<3
= (I; +21,) + g > (p(TIT;,S) + p(Ty|T;, S) — p(X,) — p(X5)). (13.1)

1<i<j<3

Then apply on (X, X5, X1, X,) and get

Z (p(T;|T;, S)+p(T;|T;, S)—p(X1)—p(Xy)) < (4d[Xq; Xo|+d[Xy; Xo]+d[Xy; Xp]) = 6d[ X5 Xo]+(Ir—14)

1<i<j<3

by . Plug in the inequality above to (), we get

n
d[X 15 Xo] < (1) + 21,) + 2nd[ X5 Xo] + 3(12 —1).
By [Lemma 13.39 we can conclude that

3—10
d[Xl;XZ] < 877d[X1§X2] - 1

Finally by Lemma 13.30 and n < 1 we get that the second term is < 0, and thus d[X; X,] <
8nd[X;; X,]. By the choice n < 1/8 and the non-negativity of d we have d[X;; X,] =0. O

(2nd[Xy; Xo] — 1h).

Proposition 13.38. For any random variables Y,,Y,, there exist a subgroup H such that

2p(Ug) < p(Y7) + p(Yy) + 8d[Yy; Yy

65



Pmoi. Let X;, X, be a ¢-minimizer. By Proposition 13.37 d[X;; X5] = 0, which by
E-i

tion 13.2§ implies p(X;) + p(X5) < p(Yy) + p(Ys) + %d[Yl;YQ] for every n < 1/8. Take
the limit at n = 1/8 to get p(X;) + p(X5) < p(V7) + p(Y5) + 8d[Y;:Y,]. By [Lemma 3.1
and we have d[X;; X;] = d[X,; X5] = 0, and by |ﬂ .emma 4.4 there are H; :=
Sym[X,]. Hy := Sym[X,] such that X; = Uy + 2, and X, = Uy, + z, for some z,. By
we get p(Up ) +p(Ug,) < p(Y1) +p(Ys) +8d[Y};Y5], and thus the claim holds
for H=H, or H = H,. O

Corollary 13.39. If |A+ A| < K|A|, then there exists a subgroup H and t € G such that
|AN(H +t)] = K~*/|A[|H|, and |H|/|A| € [K~%, K®].

Proof. Apply Proposition 13.38 on U4, Uy to get a subspace such that 2p(Uyy) < 2p(Uy) +
8d[U4:U,4]. Recall that d[U,;U,] < log K as proved in Lemma 7.2, and p(U,) = 0 by
. Therefore p(Uy) < 4log(K). The claim then follows from |ﬂ emma 13.1&. O
Corollary 13.40. If |A + A| < K|A|, then there exist a subgroup H and a subset ¢ of G
with A C ¢+ H, such that |c| < K°|A|Y?/|H|Y? and |H|/|A| € [K~8, K8).

Proof. Apply Corollary 13.39 and Lemma 7.1 to get the result, as in the proof of .
O

Theorem 13.41 (PFR with C =9). If A C FY is finite non-empty with |A + A| < K|A|,
then there exists a subgroup H of FYy with |H| < |A| such that A can be covered by at most
2K translates of H.

Proof. Given [Corollary 13.40, the proof is the same as that of . O
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