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FedRDA: Representation Deviation Alignment in
Heterogeneous Federated Learning

Wenjie Yao , Guanglu Sun , Suxia Zhu , Ruidong Wang, Xinzhong Zhu , Member, IEEE,
HuiYing Xu , Member, IEEE, and Xiguang Wei

Abstract—Federatedlearning has garnered significant at-
tention in the Internet of Things and healthcare applications
due to its ability to train a shared global model across
distributed clients. However, imbalanced data distribution
leads to model discrepancies among clients. Most existing
methods adopt implicit alignment strategies while over-
looking explicit modeling of geometric and directional dis-
crepancies in feature representations, which undermines
local model optimization. To address this issue, we propose
a method of representation deviation alignment in feder-
ated learning, which projects features onto the principal
feature space to measure deviations between local and
global feature representations explicitly. Specifically, Fed-
erated learning with Representation Deviation Alignment
(FedRDA) employs a feature encoder to extract compact
features and construct unbiased principal feature spaces
for global and local models. Then, the residual projection in
the feature space serves as a quantitative measure of the
representation deviation, effectively capturing the latent di-
rection differences between models. Besides, we introduce
a representation consistency alignment strategy, which en-
sures that the distribution of local client features becomes
more uniform within the global feature space. Extensive ex-
periments on SVHN, CIFAR-10, CIFAR-100, Tiny-ImageNet,
and GC10 demonstrate that FedRDA effectively reduces the
classifier bias caused by representational differences.

Index Terms—Data heterogeneity, feature deviation, fed-
erated learning, representation learning.
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I. INTRODUCTION

F EDERATED learning is a distributed training paradigm
where models are trained locally on client devices, and

their parameters are aggregated on a central server. It has been
widely applied in fields, such as medical image analysis, the
Internet of Things, and mobile services [1], [2]. However, data
heterogeneity across clients often leads to nonindependent and
identically distributed (Non-IID) data, which poses challenges
for optimizing the global model. As shown in Fig. 1, low-
dimensional representations of the same input may vary across
different clients, a phenomenon commonly referred to as client
drift or classifier bias [3].

Recently, various heterogeneous federated learning methods
have been proposed. Most of these methods focus on feature
information sharing among clients [4], [5] and adopt feature
space alignment techniques to mitigate heterogeneity. However,
as the number of participating clients increases, these methods
often lead to significant resource overhead [6]. On the other
hand, in scenarios with extreme heterogeneity among clients,
substantial feature differences make it difficult for the global
model to converge. Furthermore, anchor-based methods attempt
to align feature spaces by sharing identical feature anchors across
clients. Nevertheless, these methods suffer from slow global
convergence rates [7], [8].

Although existing heterogeneous federated learning methods
demonstrate some effectiveness, these methods lack fundamen-
tal investigation into the phenomenon of client drift. Classifier
calibration with virtual representations (CCVR) [9] points out
that the output of the final layer of feature extractors is more
susceptible to classifier bias. Based on this observation, sev-
eral approaches have been proposed. Knowledge transfer-based
methods aim to guide clients to learn the global knowledge
distribution rather than aligning the differences between het-
erogeneous knowledge [10], [11]. Some personalized federated
learning (PFL) methods attempt to separate global and local
information, followed by multitask optimization [12]. However,
these methods overlook the consistency between global and lo-
cal information. In addition, prototype-based methods optimize
learning by transmitting abstract class prototypes [13], [14].
These methods primarily focus on minimizing the empirical
error between global and local prototypes, rather than aligning
the latent differences between prototypes.

To solve the problems mentioned above, we propose a method
to address statistical heterogeneity, named heterogeneous
Federated learning with Representation Deviation Alignment
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Fig. 1. Motivation of proposed method. For the same class of data
across different clients, global model representations tend to be similar,
while local model representations exhibit significant variability.

(FedRDA). FedRDA defines a principal feature subspace us-
ing the global singular vectors obtained singular value decom-
position (SVD), and regularizes local client features through
the residuals of orthogonal projection (OP), which guide the
local features to minimize orthogonal deviation, thereby re-
ducing representation shift during the federated optimization
process. Specifically, FedRDA first encodes low-dimensional
features to obtain model representations containing salient in-
formation while minimizing the empirical risk loss. Then, it
establishes a global unbiased principal feature space based on
the global model representations, which serves to quantify local
representation deviation. Finally, during training, local model
optimization is achieved by minimizing both subspace repre-
sentation deviations and distribution discrepancies. FedRDA
is comprehensively evaluated on multiple datasets, achieving
favorable experimental results, which clearly validate the ability
of FedRDA to enhance model generalization in heterogeneous
environments. The main contributions of this article are as
follows.

1) We propose a novel heterogeneous federated learning
method that explicitly quantifies the spatial deviation of
local models by projecting compact feature representa-
tions onto the residuals in the principal feature space.

2) We introduce a representation consistency alignment
strategy that aligns the distributions of local and global
model representations within the principal feature space
while maintaining the global model features at the cen-
troid position.

3) We conduct extensive experiments on five datasets, nine
benchmark methods, and multiple experimental settings,
with the highest accuracy improvement of 4.21% .

II. RELATED WORKS

A. Heterogeneous Federated Learning

Federated learning aims to enable model training at the edge
of devices through collaboration among multiple clients, while
safeguarding data privacy [2], [15]. To address the statistical

Non-IID problem in federated learning, common solutions are
categorized into data-level and model-level.

Data-level methods primarily focus on data cleaning or aug-
mentation to directly modify datasets and mitigate the impact
of statistical heterogeneity [16]. However, these methods fail
to capture the optimization trends of the global model, leading
to augmented data with local biases. Furthermore, GAN-based
method leverages global information to generate new data but
often incur significant computational overhead [1]. Knowledge
distillation-based method reduces resource demands by trans-
ferring distributional information from the global model [17].
Nevertheless, directly aligning distributions in highly hetero-
geneous and large number of categories scenarios can lead to
local information loss [18]. While data-level federated learning
methods enhance local model generalization, they often over-
look dependencies on the global model.

Model-level methods are the dominant solutions to address
heterogeneity in federated learning. Among these, PFL ensures
global convergence while preserving client-specific informa-
tion. Knowledge transfer-based methods aim to guide clients to
learn the global knowledge distribution rather than aligning the
differences between heterogeneous knowledge [10], [11]. How-
ever, these methods require targeted parameter tuning, making
them less adaptable to new environments. Regularization-based
methods are comparatively simpler. For example, FedProx [19]
constrains local models with a proximal term, and pFedMe [20]
employs the Moreau envelope as a regularization term to en-
able PFL. Nonetheless, as client personalization improves, the
performance of global model can deteriorate. Prototype-based
methods address heterogeneity by utilizing class feature repre-
sentations from individual clients [21]. By enhancing the uni-
formity of class descriptions, these methods effectively improve
model generalization [13]. However, in highly heterogeneous
scenarios, prototype-based approaches may introduce additional
noise, resulting in greater deviation.

B. Feature Representation in Federated Learning

In federated learning, the Non-IID nature of client data dis-
tributions is most prominently reflected in the differences in
features. CCVR [9] have shown that the feature layer at the input
of classifier input most directly manifests these feature discrep-
ancy. Recent research has proposed that by fixing a common
classifier for all clients, it is possible to drive the learned fea-
tures across different clients toward greater consistency, thereby
mitigating training bias caused by data heterogeneity [22].

In addition, some approaches leverage global semantic knowl-
edge to align global and local features. The uniformity and
variance for heterogeneous federated learning (FedUV) [23]
method introduces two regularization terms to counteract local
model biases. FedCP [24] uses a federated conditional strategy
to separate global feature information from personalized data
on the client side, alleviating model bias. Federated stabilized
orthogonal learning (FedSOL) [25] incorporates implicit neigh-
bor constraints to promote global alignment and reduce the
impact of bias on the model. Federated bias-eliminating aug-
mentation learning (FedBEAL) [26] proposes a feature deviation
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eliminator to mitigate discrepancies among client features, while
FedAug [26] embeds a shared generator to capture consensus
features across clients, expanding the training space for each
client. These methods, however, rely on model-specific design
details and do not provide precise measurements of feature
deviation. Although previous works are effective in alleviating
client bias in statistically heterogeneous scenarios, they do not
measure and optimize the degree of deviation at the feature level,
making it difficult to find the optimal model space. This limits the
ability to align features and express global information features
in heterogeneous scenarios.

III. NOTATIONS AND PRELIMINARY

A. Federated Learning

The federated learning update process is represented as
θt+1 =

∑K
i=1

m
n θti , where K represents the number of client

models participating in the update from the local set of clients
C = {c1, c2, . . ., cN}, with N representing the total number of
clients. Here,n is the total data size across all clients, partitioned
into datasets {D1, D2, D3, . . ., Dk}, where each client dataset
Dk = {(x1, y

1
1), . . ., (xm, ypm))} as a local data size m specific

to that client. The term θti represents the model weights of the
ith client after the completion of training in the tth round. Φk

andHk represent the feature extractor and classification head of
the kth client model, respectively.

B. Representation Discrepancy

To quantify the discrepancy between local and global repre-
sentations, we employ SVD to decouple the global shared fea-
tures and local-specific features in a geometrically interpretable
manner. The key properties of SVD include the orthogonality
and uniqueness of singular vectors, the nonnegativity of singular
values, and their descending order, which can be interpreted as
a translation and rotation of features that maps them from the
original space to a new representation space. For any feature
matrix X, the SVD is expressed as follows:

X = UΣVT (1)

where U and V represent the principal directions of data distri-
bution in the feature space. By retaining the largest r singular
values and their corresponding U and V, a low-dimensional
representation of the feature space can be obtained. Specifically

Xr = UrΣV
T
r (2)

where Xr is the best approximation of the matrix in the r-
dimensional feature space, referred to as the principal feature
space. Dimensions r + 1 through m represent the residual
feature space. If projections in the residual space are excessively
large, then they indicate anomalies or deviations in the features.

The key insight is that the principal components encode
globally shared discriminative patterns across clients, while the
remaining components represent residual variations that may
capture client-specific features. For any local feature vector
hL
i ∈ Rd, its projection onto the residual subspace is

hproj
i = U resU

T
resh

L
i (3)

which isolates the component of hL
i orthogonal to the global

principal subspace. The magnitude ‖hproj
i ‖2 quantifies the rep-

resentation deviation between local features and the global
consensus.

IV. METHOD

In this section, we introduce FedRDA, as shown in Fig. 2,
FedRDA consists of two key modules: feature space construc-
tion module and representation consistency alignment mod-
ule. First, we employ a feature encoder to extract compact fea-
tures, which capture low-error representations, including global
features extracted by the global model and features extracted
by the local model during the previous training epoch. Next, we
construct an unbiased principal feature space biased toward local
data to measure the representation deviation between local and
global models. Finally, based on the measured representation
deviation, we perform spatial and distributional alignment to
guide the local model toward optimizing within the global
feature space. The ultimate goal of FedRDA is to minimize
the deviation of client features from the global feature space
and ensure that each client achieves uniform distribution within
local feature space.

A. Low-Dimensional Compact Feature Extraction

1) Compact Encoder: To mitigate the impact of overfitting
dominant category relative to minority category, we design a
feature compacting process through linear projection and classi-
fication. Given high-dimensional features X ∈ Rd from Φk, we
first obtain compact representations through Z = XWp + bp

with Wp ∈ Rd×r1 and bp ∈ Rr1 . These projected features are
then processed through the classification layer

Le =
1
m

m∑
i=1

�(ZiWc + bc,y
i) (4)

where Wc ∈ Rr1×p and bc ∈ Rp represent the learning weight
and bias vector of last layer, respectively, �(·) represents the
cross-entropy loss function, and yi represents the true label of
ith sample.

To preserve feature fidelity while enhancing compactness, we
simultaneously maintain direct classification on original features

Lo =
1
m

m∑
i=1

�(XiWo + bo,y
i) (5)

where Wo ∈ Rd×p and bc ∈ Rp represent the learning weight
and bias vector of classifier, respectively. The unified objective
combines both components

L = Lo + αLe (6)

where α ∈ [0, 1] is controlling fidelity-compactness tradeoff.
2) Global State Feature Collection: Unlike statistical hetero-

geneity mitigation approaches that rely on sharing feature infor-
mation between clients, we treat the global model as a trusted
model. The feature representations extracted by the global model
are used as a global reference. After each communication round,
when the global model is sent to the clients, the local dataset Dk
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Fig. 2. Proposed framework of FedRDA, where the global representation is the output features of the global model in the local dataset, and the
local representation is the features output by the local model in the previous epoch. The black lines indicate the feature extraction process prior to
each communication round, and the blue lines represent the subsequent optimization and learning process.

is processed to extract features and perform compact encoding
by (4), resulting in global feature representation Zg .

3) Local State Feature Collection: The local feature repre-
sentation Zl extracted by the local model is used as a local
reference. The local dataset Dk is processed to extract features
and perform compact encoding by (4).

B. Representation Deviation Alignment

To address the Non-IID problem, we aim to align the repre-
sentation direction of local models with the global model. Unlike
existing explicit parameter alignment methods, we utilize SVD
to decompose the global feature space into orthogonal basis
vectors and construct a global feature direction guidance matrix.
This enables local client features to achieve implicit alignment
with the global representation space through OP. The repre-
sentation deviation alignment process of FedRDA is divided
into two steps: feature space construction and representation
consistency alignment.

1) Feature Space Construction: To calculate directional de-
viation in the feature space, we first construct the principal fea-
ture space by feature representationZ. To simplify computation,
according to (4), eliminate the impact of the bias term bto define
the origin of the feature space as follows:

o = −(ZW)+b (7)

where (·)+ represents the pseudoinverse. The term o signifies
the offset distance from the original feature space, thereby
establishing the origin of the unbiased feature space. This allows
for the formation of new representation Zo = Z+ o.

Then, we construct the unbiased principal feature space using
the global features

ZT
o Zo = QΛQ−1 (8)

where Λ ∈ Rd is the covariance matrix of eigenvalues, sorted
in descending order. We select the top r eigenvalues to form
a r-dimensional principal feature vector space, represented as
P ∈ R(r×d).

Based on (7) and (8), we can obtain the global unbiased
principal feature space Pg and the local unbiased principal
feature space Pl by global unbiased representation Zg

o and local
unbiased representation Zl

o. The specific calculation formulas
are as follows:

Pg = Qg[:, : r],Pl = Ql[:, : r] (9)

where Qg is the eigenvector matrix obtained from the SVD of
the global unbiased representation Zg

o and Ql is the eigenvector
matrix obtained from the SVD of the local unbiased representa-
tionZl

o. Here, the top r eigenvectors corresponding to the largest
eigenvalues form the principal feature spaces Pg and Pl, which
are used for representation deviation alignment.

2) Representation Consistency Alignment: To achieve fea-
ture alignment within the principal feature space P, we de-
compose a feature x into components within and orthogonal
to P as follows: let the projection of x onto P be denoted as
xP⊥, where x = xP + xP⊥. The orthogonal component xP⊥ is
determined by the feature vectors spanning dimensions (r + 1)
to d, represented by S. The deviation of feature x from space P
can thus be expressed as xP⊥ = SSTx.

a) Deviation consistency: Due to statistical heterogeneity,
feature outputs X = [x1,x2, . . .,xb] derived from dataset sam-
ples may have low representation for some feature samples.
To address this, we normalize the deviation scores uniformly,
defining the intrinsic deviation score as follows:

d(X,S) =

∑b
i=1 max(lij=1, . . ., l

i
p)∑b

i=1

√
xT
i SS

Txi

√
xT
i SS

Txi (10)
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where lip represents the score of class p for the ith feature
xi in the sampled dataset, obtained as the output of the final
classification head after applying the softmax function, ensuring
that the deviation score does not exceed the actual classification
output.

To measure the deviation of the local features Zb
o, we first

project the local feature representations onto the local feature
subspace. The final deviation value E is computed as follows:

E =
eug + eul∑p

i=1 e
li + eug + eul

(11)

where ug = d(Zb
o,Sg)− d(Zg

o,Sg) represents the deviation of
local features relative to the global feature space and ul =
d(Zb

o,Sl)− d(Zg
o,Sl) represents the deviation in the local fea-

ture space. The result is influenced by three components: the
local prediction score, the deviation of local features from the
global feature space, and the deviation in the local feature space.
A large relative deviation value suggests significant differences
between the local and global feature representations, necessi-
tating feature optimization. A small deviation value indicates
that the learned features closely approximate the global feature
representation, reflecting a smooth feature learning process.

b) Distribution consistency: To ensure that local and global
feature spaces are aligned and follow a consistent distribution
while reducing deviations, we define the distribution consistency
value

U = DKL(u
′
l‖u′g) =

b∑
i=1

u′l(i)log
u′l(i)
u′g(i)

(12)

where u′(·) represents the probability distribution output of u
after applying softmax function.

C. Loss Function

The objective of FedRDA has been to ensure that the origi-
nal model and compact features accurately classify data while
aligning local features with the global feature space. Therefore,
the final optimization objective has been defined as follows:

L = Lo + αLe + γ(E + U) (13)

where the loss function consists of three components: first term,
Lo, represents the main classification loss. The second term,Le,
represents the classification loss of compact feature, encourages
the model to output high-quality, compact features. The third
term collectively form a consistency alignment strategy. γ is
a hyperparameter that controls the level of deviation. The E
mitigates the deviation between local and global feature repre-
sentations, the U ensures that local and global features follow a
consistent distribution trend.

V. EXPERIMENTS

A. Datasets and Hyperparameters Settings

FedRDA is primarily designed for federated learning classi-
fication tasks. To evaluate its effectiveness, we followed prior
works [7], [25] and selected four datasets, SVHN, CIFAR10,

Algorithm 1: Federated Learning With Representation De-
viation Alignment.

Input: Initial global model θrg , which includes Wc, Wp

and Wo. Key hyperparameters are as follows: learning
rate η, participation ratio λ, number of local training
epochs E, communication rounds R, heterogeneity
level ρ.

Output: Global model θg.
1: produce model aggregation
2: forr = 0, 1, . . ., R− 1do :
3: Randomly sample K clients based on λ and N
4: for k ∈ N parralle do:
5: send global model θrg to client k
6: θrk, |Dk| ← LocalUpdate(k, θrg)
7: end for
8: θr+1

g =
∑

k∈N
¯|Dk |∑

k∈N |Dk | · θrk
9: end for
10:end produce
11:function LocalUpdate(k, θr+1

g )
12: Zg ← get global feature with θrg and Dk

13:build global feature space by (9)
15: for e = 0, 1, 2, . . ., E − 1 do:
16: for (xi, yi) ∈ Dk :
17: Zl ← get global feature with θe and (xi, yi)
18: build local feature space by (9)
19: Eg ← deviation compute
20: U ← compute consistent distribution
21: L = Lo + αLe + γ(E + U)
22: end for
23: end for
24: return θrk, |Dk|

CIFAR100, and Tiny-ImgaeNet, for experiments. SVHN,
CIFAR-10, and CIFAR-100 contain 50 000 training images and
1000 test images, following the official dataset settings. Tiny-
ImageNet consists of 200 classes, with each class containing
500 training images, 50 validation images, and 50 test images.
GC10-DET is a steel defect detection dataset consisting of 1832
training images and 461 testing images, covering ten defect
categories. The image resolution is resized to 224× 224 for
model input. We use different backbone models tailored to the
complexity and resolution of each dataset: SimpleCNN (2 Conv
+ 2 FC layers) for SVHN and CIFAR-10, visual geometry group
(VGG)-11 for CIFAR-100, residual neural network (ResNet)-18
for Tiny-ImageNet, and GC10-DET, which involve larger input
resolutions or more complex visual patterns. The Non-IID data
partition follows a dirichlet distribution, with ρ controlling the
level of heterogeneity. To ensure rigorous comparisons with
baseline methods, the experiments in this work are config-
ured with ten clients, the default heterogeneity level ρ = 0.1,
a learning rate of 0.01, a batch size of 64, three local training
epochs, and the stochastic gradient descent (SGD) optimizer
with a momentum of 0.9. All experiments were conducted on a
workstation equipped with a single RTX 3090 GPU and a 2.90
GHz Intel(R) Xeon(R) Gold 6226R CPU.
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TABLE I
RESULTS OF THE GLOBAL MODEL ACCURACY (%) ACROSS FOUR DATASETS UNDER DIFFERENT LEVELS OF HETEROGENEITY ARE PRESENTED

B. Baselines

To validate the effectiveness of FedRDA, we compare with
four categories of baseline methods. First, classical federated
learning algorithms, including FedAvg [2], FedProx [19], and
FedNova [27], optimize models by introducing regulariza-
tion terms. Second, contrastive learning-based methods, such
as model-contrastive federated learning (Moon) [4], lever-
age the similarity between model representations to perform
model-level contrastive learning. Third, anchor-based method,
FedFM [7], guides clients toward a shared optimization target
by introducing common anchors across clients. In addition,
generalization-enhancing algorithms, such as FedUV [23] and
FedSOL [25], indirectly improve global model performance
by enhancing the generalization capabilities of local models.
Finally, methods similar to ours, such as FedPAC [28] and
FedFA [29], address federated heterogeneity problems through
feature-based alignment mechanisms.

C. Performance Across Different Datasets and
Heterogeneity Levels

Table I presents the experimental results of all baseline
methods on three datasets under heterogeneous settings with
ρ ∈ {0.1, 0.05}. The proposed FedRDA method achieved state-
of-the-art performance in nine out of ten experimental config-
urations. Notably, on the CIFAR-10 dataset, it outperformed
the baseline FedAvg by 3.92% . On the CIFAR-100 dataset, Fe-
dRDA surpassed the second-best algorithm by 1.4% and 1.36%,
respectively. Similarly, on the Tiny-ImageNet dataset, FedRDA
demonstrated strong performance, achieving improvements of
at least 2.94% and 1.9% . This success is attributed to the ability
of FedRDA to effectively utilize the preference information
of global and local model features during federated training.
By measuring and mitigating the discrepancies between these
features, FedRDA reduces bias and enhances performance.

In scenarios with extreme heterogeneity (ρ = 0.1 and ρ =
0.05), the proposed algorithm demonstrates superior effective-
ness compared to classic federated algorithms, such as FedAvg.
For general tasks, compact feature representations contain abun-
dant latent deviation information, enabling FedRDA to effec-
tively align features and mitigate local model representation

Fig. 3. Accuracy and loss curves on the SVHN dataset with α = 0.1.

deviations. Most baseline methods also maintain competitive
performance under these conditions. However, for complex
tasks, the experimental results of baseline methods show sig-
nificant variability, whereas FedRDA consistently outperforms
all baselines, because FedRDA focuses on learning latent dif-
ferences between model representations rather than directly
aligning distributions. In Non-IID environments with complex
tasks, models are more sensitive to feature information, and
direct feature space alignment can impair the learning capacity
of local models.

As shown in Fig. 3, following the approach of FedUV [23]
and FedFA [29], we provide an analysis of convergence. From
Fig. 3(a), in terms of training accuracy, FedRDA demonstrates
relatively faster convergence, achieving higher accuracy within
fewer training rounds. From Fig. 3(b), regarding training loss,
FedRDA maintains a consistently faster convergence rate. Based
on the motivation and methodology proposed in this work, when
the model is fully trained and both global and local feature repre-
sentations become stable, the feature discrepancy also stabilizes.
FedRDA implicitly measures and optimizes this discrepancy,
facilitating more efficient global model learning.

D. Impact of Participating Clients

Fig. 4 presents experiments to evaluate the impact of the
number of participating clients on FedRDA. The parameters are
set as N ∈ {50, 100} and the sampling rate as λ ∈ {0.4, 0.8}.
The experimental analysis is detailed as follows.
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Fig. 4. Accuracy with different numbers of clients and sampling rates.

Fig. 5. Change curves of different local epochs.

FedRDA demonstrates strong stability under low client par-
ticipation, indicating that the proposed deviation-aware align-
ment method can effectively reduce representation discrepancies
across clients, even when the participating clients vary. While
higher client participation generally leads to better performance,
the proposed method still achieves superior generalization in
low-participation scenarios, benefiting from the alignment of
principal semantic subspaces. Overall, the results suggest that
FedRDA possesses participation-aware capabilities, making it
well-suited for deployment in federated settings with dynamic
or sparse client involvement.

E. Impact of Different Local Training Epochs

Generally, as the number of local training rounds increases,
the feature space of model becomes more aligned with client-
specific features, drifting further from the global feature space.
As shown in Fig. 5, FedRDA outperforms most baseline algo-
rithms under varying local training epochs and achieves the best
generalization performance with fewer training rounds, because,
with fewer epochs, representation deviations among models are
less influenced by Non-IID conditions, allowing FedRDA to
effectively align representations by capturing latent differences.

F. Effectiveness Analysis of FedRDA

In this section, we investigate the impact of two key pa-
rameters in FedRDA, projection dimension r1 and deviation

TABLE II
ACCURACY(%) UNDER DIFFERENT COMPACT FEATURE DIMENSIONS

Fig. 6. Experimental results of different deviation calculation dimen-
sions.

computation dimension (SVD principal feature selection dimen-
sion) r, on its generalization capability. The parameters are set
as d/r1 ∈ {0.25, 0.5, 0.75, 1} and r = β · {1, 2, . . . , 9}, where
β = 5 for convolutional neural network (CNN) and β = 20 for
other models. For the VGG11 and ResNet18 classifier, the fea-
ture dimension d is 512, while for the CNN classifier, the feature
dimension d is 84. The experimental analysis is as follows.

1) Impact of Feature Dimensions: As shown in Table II, re-
veals that appropriate dimension reduction enhances the ability
of model to extract generalizable features, thereby improving
generalization performance. Reducing the dimension to half of
the input feature dimension achieves optimal generalization.
However, further dimension reduction leads to the loss of essen-
tial features, resulting in decreased performance. Consequently,
we recommend setting the feature dimension to one-half in
FedRDA. Conversely, increasing the feature dimension raises
computational complexity and exacerbates deviation, which can
adversely impact performance.

2) Impact of Different Deviation Dimensions: As shown in
Fig. 6, increasing the dimensionality of the feature vectors
implies that more dominant features are extracted for devia-
tion calculation, which results in an overall reduction in bias.
However, using fewer feature vectors for computation does not
necessarily lead to stronger generalization capabilities, because
in the context of federated learning, the dominant features vary
across different clients. The deviation values gradually decrease
as the feature dimensions increase, and the deviation magnitude
is positively correlated with accuracy, because, FedRDA aligns
model representations by optimizing deviations, effectively un-
covering deeper latent differences. This facilitates fine-grained
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TABLE III
ACCURACY(%) OF DIFFERENT MODELS ON THE CIFAR-10 DATASET

TABLE IV
PERFORMANCE UNDER DIFFERENT DECOMPOSITION METHODS

alignment, thereby enhancing the generalization capability of
the global model.

3) Impact of Different Network Models: In this section, we
study the impact and effectiveness of seven different model
structures on FedRDA. The experimental analysis is as follows.

As shown in Table III, the results reveal that FedRDA demon-
strates high adaptability across most network designs, signif-
icantly enhancing the generalization of the global model in
heterogeneous settings. In particular, VGG and ResNet mod-
els show improvements of 6.02% and 6.65% under hetero-
geneity level ρ = 0.1, respectively. Lightweight models, such
as MobileNet and ShuffleNet, also exhibit improved perfor-
mance. However, EfficientNet, which leverages neural architec-
ture search, shows only moderate gains, because the heteroge-
neous data distribution causes inconsistent layer representations,
affecting performance. Overall, FedRDA outperforms FedAvg
across diverse model architectures, demonstrating the ability to
effectively align model representations.

4) Comparative Analysis of Decomposition Methods: As
shown in Table IV, we introduce orthogonal-triangular (QR)
decomposition and principal component analysis (PCA) to con-
struct the feature space via feature decomposition. QR decom-
position provides an orthogonal basis but lacks the ability to
rank feature directions by semantic importance, and thus fails
to capture the dominant representation patterns. PCA constructs
principal directions based on the eigenstructure of the covariance
matrix to capture major feature trends. The superior performance
of SVD indicates that effective alignment relies not only on
feature orthogonality but also on the semantic prioritization of
feature directions, making it well-suited for addressing hetero-
geneity in federated learning.

5) Comparative Analysis of Compact Encoder Methods: As
shown in Table V, we employ auto-encoder (AE) and random
OP for compact feature encoding, where the original feature
dimension is 512 and the encoded dimension is 384. It can

TABLE V
PERFORMANCE UNDER DIFFERENT COMPACT ENCODE METHODS

TABLE VI
ACCURACY(%) OF DIFFERENT MOUDLES ON THE THREE DATASET

be observed that multi-layer perceptron (MLP)-based encoding
achieves superior performance. AE, as a classical dimensionality
reduction technique, suffers from degraded performance due
to the introduction of reconstruction loss. OP, which reduces
dimensionality using randomly generated orthogonal matrices,
enhances feature discriminability to some extent but lacks the
learning capacity required to capture representative feature em-
beddings. In contrast, MLP serves as a simple yet effective
encoder that can learn to obtain compact representations, thereby
facilitating subsequent deviation computation.

G. Ablation Study

In this section, we study the impact of different modules in
FedRDA under the ResNet model across three datasets. We set
d/r1 = 0.75, β = 4,α = 1, and γ = 1. The ablation settings are
as follows.

1) wo−Lo: Compared to FedRDA, this variant removes the
primary classifier and relies solely on compact feature
classification and representation deviation alignment, and
performance is tested.

2) wo−Le: Compared to FedRDA, this variant removes
the low-dimensional compact feature encoder and per-
formance is tested.

3) wo−(E + U): Compared to FedRDA, this variant re-
moves the representation consistency alignment strategy
and performance is tested.

As shown in Table VI. For wo−Lo, we observe degraded
performance after its removal, particularly on the CIFAR-10 and
CIFAR-100 datasets. This is because the primary classifier is re-
sponsible for classifying the original features used for projection,
which encode both local and global knowledge. As a result, these
features are not suitable for representing feature deviation. This
finding highlights the necessity of retaining both the primary
classifier and the projection layer. Removing the Le component
(wo−Le) leads to a performance decline, as the compact feature
encoder helps FedRDA obtain more representative model repre-
sentations while avoiding deviations caused by noise. This com-
ponent effectively extracts deviation information across varying
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Fig. 7. (a) Impact of different fidelity–compactness trade-offs and lev-
els of feature deviation. (b) Impact of the number of compact encoding
layers.

TABLE VII
COMPARISON OF COMPUTATIONAL ACROSS DIFFERENT ALGORITHMS

degrees of heterogeneity, proves that extracting compact features
can mitigate the influence of dominant category on clients and
enhance the generalization capability of the global model. When
the consistency alignment strategy is removed (wo−(E + U)),
performance also decreases. This indicates that FedRDA can
effectively capture latent direction differences between model
representations, enabling the consistency strategy to align these
representations and improve overall performance.

As shown in Fig. 7(a), we examine the sensitivity of FedRDA
to the hyperparameters α and γ, which control the weights of
Le and (E + U), respectively. The results (illustrated in Fig. 7)
demonstrate that FedRDA maintains robust performance within
a wide range of values. While extremely small or large values
may affect optimization balance, the model exhibits stable accu-
racy when α and γ are set within a moderate range ([0.01, 0.1]).
Furthermore, as shown in Fig. 7(b), we investigate the impact of
the number of projection layers on performance. We observe that
increasing the number of layers does not improve effectiveness.
This is because the goal of projection is to obtain compact
features for global deviation computation. When the number
of projection layers is excessive, local feature information is
disrupted, leading to the failure of Le.

H. Computational Analysis

As shown in Table VII, this section compares the model
parameter size, computational cost, and average per-round
client training time of FedRDA with other baseline methods.

Fig. 8. Feature embedding visualization of baselines and FedRDA in
the SVHN dataset.

FedRDA maintains a lower parameter size and computational
cost because it only introduces a projection layer for compact
feature extraction and classification, while SVD decomposition
and deviation computation are performed solely on compact
features, resulting in lower computational overhead compared to
FedProx and MOON. FedNova requires local model parameter
normalization and FedSOL involves additional fine-tuning of
local model parameters, both leading to increased computa-
tional cost. FedFM incurs additional computation due to anchor
box calculation and matching operations. FedPAC introduces
significant computational overhead by performing personalized
model fine-tuning and feature alignment, while FedFA increases
both parameter size and computational cost by enforcing feature
alignment at each convolutional layer.

I. Visualization Analysis

As shown in Fig. 8, we visualize the feature representations
using t-distributed stochastic neighbor embedding (t-SNE) for
dimensionality reduction. We observe that the classical method
FedAvg is capable of distinguishing some class-specific fea-
tures. In contrast, traditional methods, such as FedProx, MooN,
and FedNova, which primarily focus on privacy preservation,
tend to exhibit significant overlap in feature clusters under highly
heterogeneous scenarios. The anchor-based method FedFM
shows blurred cluster boundaries under extreme Non-IID set-
tings. Regularization-based methods, such as FedUV and Fed-
SOL, achieve better clustering for certain features, outperform-
ing FedAvg. Feature alignment methods similar to FedRDA,
such as FedPAC and FedFA, also display overlapping clusters
under high heterogeneity. FedFA, which aligns features using
anchor boxes, shows a tendency to better cluster major features.
In comparison, FedRDA demonstrates well-separated clustering
for most features. This superior performance is attributed to the
proposed deviation alignment strategy, which implicitly aligns
local features toward the shared global representation space,
facilitating more effective feature learning.

J. Case Study

As shown in Fig. 9, we visualize clientwise feature distri-
butions using t-SNE on the global test set and compute the
average centroid distance (CD) across clients to assess feature
alignment. A smaller CD indicates lower interclient bias and
higher feature consistency. FedAvg achieves partial alignment
across clients, but the feature distributions within each client
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Fig. 9. Visualization of feature embeddings for the baselines and Fe-
dRDA client models on the global test set of SVHN (each color denotes
a different client).

remain highly dispersed, which hinders global model aggrega-
tion. FedProx displays severe interclient representational diver-
gence, highlighting substantial model drift and limited general-
ization. Contrastive learning and generalization-oriented meth-
ods fail to significantly alleviate such inconsistencies. FedPAC
achieves moderate distribution alignment through explicit fea-
ture matching. FedSOL learns bias-invariant parameters and
achieves the lowest CD, enhancing client generalization and
global consistency. However, similar to FedAvg, it suffers from
highly dispersed intraclient features, making class-level align-
ment difficult and limiting global generalization. In contrast,
FedRDA performs alignment within a principal feature sub-
space, which facilitates structured consistency across clients.
By explicitly modeling representational deviation, it yields more
coherent feature distributions and enhances the global model’s
generalization ability.

K. Privacy Analysis

FedRDA provides a level of privacy protection comparable
to that of FedUV [23] and FedSOL [25], while outperforming
FedFA [29] and FedPAC [28] in terms of privacy preserva-
tion. First, as shown in Table I, during the construction of the
feature space, FedRDA utilizes local client models for feature
extraction without sharing features across clients. Second, under
statistically heterogeneous settings, FedRDA performs feature
selection during deviation-based alignment, thereby limiting
the amount of information an adversary can infer even in the
presence of gradient leakage during communication, which
enhances user privacy. Finally, privacy requirements may vary
across application scenarios, for cases requiring stronger pro-
tection, techniques, such as differential privacy or homomorphic
encryption, can be integrated to achieve a better tradeoff between
privacy and performance.

VI. CONCLUSION

This article proposed a novel heterogeneity bias mitigation
algorithm based on feature representation deviation. Specifi-
cally, FedRDA used a feature encoder to learn model represen-
tations that capture deviation information under heterogeneous
conditions and constructed a global unbiased principal feature
space. Subspace projection is then used to quantify representa-
tion deviations between models, followed by the introduction of

a consistency strategy to align model representations. Extensive
experiments on three datasets with varying complexity. The
results demonstrate that FedRDA outperforms both traditional
algorithms and state-of-the-art methods designed to address
statistical heterogeneity. Future work will focus on exploring
how client model weights can be leveraged to further mitigate
statistical heterogeneity.

Although FedRDA achieved notable improvements in gener-
alization performance, future work may further enhance com-
munication efficiency by leveraging deviation-aware alignment
to reduce unnecessary parameter uploaded.
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