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Abstract

Multi-view clustering, a pivotal technology in multimedia research,
aims to leverage complementary information from diverse perspec-
tives to enhance clustering performance. The current multi-view
clustering methods normally enforce the reduction of distances
between any pair of views, overlooking the heterogeneity between
views, thereby sacrificing the diverse and valuable insights inherent
in multi-view data. In this paper, we propose a Tree-Based View-
Gap Maintaining Multi-View Clustering (TGM-MVC) method. Our
approach introduces a novel conceptualization of multiple views
as a graph structure. In this structure, each view corresponds to a
node, with the view gap, calculated by the cosine distance between
views, acting as the edge. Through graph pruning, we derive the
minimum spanning tree of the views, reflecting the neighbouring
relationships among them. Specifically, we applied a share-specific
learning framework, and generate view trees for both view-shared
and view-specific information. Concerning shared information, we
only narrow the distance between adjacent views, while for specific
information, we maintain the view gap between neighboring views.
Theoretical analysis highlights the risks of eliminating the view
gap, and comprehensive experiments validate the efficacy of our
proposed TGM-MVC method.
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« Theory of computation — Unsupervised learning and clus-
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1 Introduction

In real world scenarios, we often face the challenge of learning
from multiple media sources or making decisions by combining
data from various sources. For instance, in the field of autonomous
driving technology, autonomous vehicles gather data from different
perspectives through sensors such as cameras and radars, integrat-
ing and analyzing these data to make intelligent decisions. These
diverse and rich sources of information present us with the diver-
sity and complementary views of the data. Therefore, effectively
integrating and mining the rich information contained in these
multimedia data sources becomes a crucial issue.

Multi-view learning is a nontrivial topic in the filed of multi-
media technology. A fundamental issue of multi-view learning
is multi-view representation learning [1-7], which addresses the
challenge of unifying data representation from diverse sources.
Multi-view clustering (MVC) [8-15] is a typical task in multi-view
learning, where the clustering performance is largely contingent
upon the quality of the representations of multi-view samples. As
such, exploring representation learning across multiple views holds
significant importance, especially within the domain of multi-view
clustering tasks.

Existing deep multi-view clustering representation learning meth-
ods can be categorized into three paradigms [1, 16], i.e, joint meth-
ods [17-22], alignment-based methods [2, 6, 7, 9, 23? ], and share-
specific methods [4, 24-26]. Joint methods enable samples from dif-
ferent views to be independently optimized within their respective
view spaces, and then integrates the representations from different
views through fusion techniques. The latter two methods both map
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Figure 1: t-SNE Visualization on ALOI-100 dataset, where
each color represents a view. Fig (a) presents the alignment-
based method. Fig (b) presents the share-specific method. Fig
(c) presents our proposed TGM-MVC method. Fig (d) demon-
strates the view gap maintained by the TGM-MVC method.
By training these three methods for same epochs, we have
verified that maintaining the view gap helps preserve view
diversity and enhances clustering effectiveness.

representations from different views into a shared subspace, aiming
to learn the unified representation for all views. Alignment-based
methods [2, 6, 7, 9] aim to bring representations closer between
any view pair. Share-specific methods [4, 24-26] model the view
information as shared information and specific information, maxi-
mizing the mutual information of shared information across any
view.

Alignment-based methods and share-specific methods have demon-
strated notable advancements in the MVC task. However, their
capacity to fully apprehend the intricacies of view heterogeneity
appears to be constrained. Alignment-based methods concentrate
solely on the consensus between views, overlooking the comple-
mentary information among them. Share-specific methods forcibly
bring views closer in consensus, and lack supervision in learning
complementary information as well. In real-world scenarios, views
exhibit intricate adjacency relationships. Fig. 1 presents t-SNE visu-
alizations of different views from ALOI-100 dataset. In Fig. 1(a)(b)(c),
we utilized alignment-based method, share-specific method, and
our proposed TGM-MVC method for the same training epochs. The
contrastive-based method homogenizes different views, leading to
subpar clustering performance; whereas the TGM-MVC method
demonstrates excellent clustering performance, maintaining the
distinctions between views (Fig. 1(d)). In this paper, we define the
views’ distinctions as view gap, which is measured by cosine dis-
tance of view representations. Based on the concept of view gap,
we propose a foundational hypothesis, i.e. the pursuit of uniform
consensus across all views may be inherently irrational. Instead,
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preserving the view gaps between distinct views and enrich-
ing their diversity should facility the learning of more robust
multi-view representations.

In line with the limitations highlighted above for current share-
specific methods, we introduce a novel approach, termed the Tree-
Based View Coordination Enhancement (TGM). Building upon the
share-specific framework, our proposed method incorporates a
more comprehensive understanding of the relationships between
multi-views. Our core idea is the recognition of the intricate adja-
cency relationships that exist between views in real-world scenarios,
as demonstrated by the t-SNE visualizations in Fig. 1(a) and (b).
Unlike alignment-based methods that focus merely on achieving
consensus or share-specific methods that force views into closer
alignment, our TGM method takes into account both consensus
and complementary information. To achieve this, we begin by con-
structing a view adjacency matrix for the shared representations,
capturing the inherent relationships across different views. With
this matrix, we generate a minimum spanning tree that encapsu-
lates the shared information while preserving the natural distances
between views. By bringing closer the shared representations be-
tween adjacent nodes in this view tree, we avoid the limitations of
directly aligning distant views, as observed in Fig. 1(d).

The main contributions of this paper are summarized as follows:

e Our TGM-MVC method acknowledges the intrinsic view
gap’ between views. Through theoretical and empirical re-
search, we demonstrate that maintaining this view gap con-
tributes to preserving the rich information of multi-views.

o The tree-based view graph generation strategy allows for the
rapid and efficient construction of neighborhood relation-
ships among views, analyzing the proximity relationships
between views, thus facilitating downstream tasks in multi-
view learning.

e Comprehensive experiments across six benchmark datasets
serves to highlight both the superiority and efficiency of the
proposed TGM-MVC method. Furthermore, the effectiveness
of our approach is substantiated by ablation studies and
visualization experiments.

2 Related Work

2.1 Deep Multi-view Representation Learning

Recently, Multi-View Clustering (MVC) [27-41] has recently at-
tracted considerable attention as a crucial multimedia technology.
Within this domain, deep Multi-View Clustering (DMVC) [6, 42—
50] using deep networks has emerged as an important approach.
Presently, deep multi-view clustering methods can be categorized
into three main classes: joint methods, alignment-based methods,
and share-specific methods. Joint methods consider the differences
and complementarities between views, achieving the representa-
tions by independently optimizing and concatenating sample rep-
resentations in each view space. For instance, DMJC [18] involves
training independent autoencoders for each view and then utilizes
sharpening of the distribution of concatenated representations as a
self-supervised signal for training. While joint method for multi-
view representation learning is straightforward and effective, it
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lacks direct interaction between views, thereby hindering the acqui-
sition of a consensus across multiple views. Alignment-based meth-
ods, on the other hand, map representations from different views to
a shared semantic space based on the consistency of multi-view data,
with the most typical approach being contrastive learning to mini-
mize the distances between any two views. For instance, MFLVC
[51] introduces two objectives on high-level features and pseudo-
labels, leveraging contrastive learning to diminish the distances
between views and achieve multi-view clustering. However, this
method primarily focuses on the consensus among views, neglect-
ing the differences and gaps between views, leading to the loss of
unique view-specific information during the alignment process and
resulting in information loss. Share-specific methods offer a more
comprehensive integration of the aforementioned approaches by
decoupling representations into consensus information and unique
information, thus considering both the consistency and comple-
mentarity of multiple views. Nevertheless, the share-specific infor-
mation architecture still exhibits shortcomings in addressing the
view gap. In the subsequent section, we will delve into a detailed
illustration of the view gap issue.

2.2 Rethinking of view gap in DMVC

Recent studies have unveiled the existence of gaps among hetero-
geneous data sources, and forcefully eradicating these distinctions
could detrimentally affect the data’s representation learning. Wang
et al. [52] carried out a theoretical scrutiny on contrastive loss,
stressing that enhanced alignment should involve the diminish-
ment of disparities across diverse modalities. Nonetheless, although
alignment is extensively applied in pre-training utilizing multiple
data sources, potential conflicts could emerge between upstream
alignment objectives and diverse downstream tasks, such as clas-
sification or clustering. Jiang et al. [53] analyzed two modalities,
image and text, and discovered that minimizing the modality gaps
does not always lead to improved performance in subsequent tasks.
While existing studies have primarily concentrated on dual data
sources, when dealing with multiple data sources, as in multi-view
settings, the variations in distances between different view pairs
can pose a growing challenge in distance evaluation. Dong et al.
[54] constructed a relational matrix among views rooted in the
distribution of view data, with the intention of fostering consensus
among views while simultaneously deviating from specialized com-
plementary representations linked to specific views as indicated
by the relationship matrix. Nevertheless, the diverse gaps among
different view pairs suggest an inherent complexity in both harmo-
nizing all views towards consensus and distancing complementary
representations within diverse views. Tackling the intricacies stem-
ming from the disparities among various views in a multi-view
context continues to pose an unresolved challenge.

3 Method

In this section, we elaborate on our Tree-Based View-Gap Maintain-
ing Multi-View Clustering (TGM-MVC) method. The entire frame-
work is illustrated in Fig. 2. It encompasses three modules and three
stages: 1) In the first stage, we employ a conventional share-specific
Learning Module (ShaSpec) to decouple sample features X®) into

shared representations Z(D) and specific representations Z(O). 2)In
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Table 1: Basic notations used in this paper.

Notation Meaning
x @) Data matrix of the v-th view
Z(”> Shared representation of the v-th view
Z(U) Specific representation of the v-th view
L~?, D Shared Encoder/Decoder for all views
E®@ D@ Specific Encoder/Decoder for the o-th view
M View Consensus Distance Matrix
M View Heterogeneity Distance Matrix
G=(X,8) View Consensus Spanning Tree
G=(X38) View Heterogeneity Spanning Tree

the second stage, we introduce a Shared Tree-based View Consen-
sus Learning Module (ShaTree) and a Specific Tree-based View Gap

Maintaining Module (SpecTree), which respectively operate on

the shared representations AR and specific representations A

obtained from the first module. 3) In the third stage, we concatenate
shared and specific representations from all views for clustering.
For clarity, all symbols and their meanings are presented in Table 1.

3.1 Problem Formulation

Given a set of multiview data X = {X(l),X(Z), .,.,X(V)}, where
V is the number of views. X(?) = {xiv),xgv), . x}\?)} € RNXdy
represents the sample set of the v-th view, with N as the number

(o)

of samples, and d, as the input dimension of the v-th view. x;

denotes the i-th sample of the v-th view.

()

We extract sample x;  into two types of features, that is the

El(u) and the specific view feature il@), in the
manner of [4, 24-26]. To achieve this, we trained specific encoders
E(®) and specific decoders D(®) tailored to each view, along with a
universal shared encoder E and a shared decoder D for all views. It
should be noted that in E or D, all components are the same across
all views except for the first and last two linear mapping layers.
The ultimate objective is to achieve the optimal clustering perfor-
mance by concatenating the shared and specific representations
from individual views.

shared view feature

3.2 Share-Specific Representation Learning
Module

To exploit the consensus and heterogeneity between views, we
leverage the share-specific representation learning module (ShaSpec)
in the Stage 1 to decouple the sample features into shared represen-
tations and specific representations. The loss within the ShaSpec
module is composed of three components: reconstruction loss Ly,
contrastive learning loss Lo, and orthogonal loss L, ;. We begin
by decoupling the representations of the samples, with

Z9=E(x@), ad 2" =E@ (x©), @

forie{1,..,N}andov € {1,..., V}. To prevent feature collapse, we
trained a corresponding decoder for each encoder to reconstruct
the sample features, with

>~<<v>:5(z“’>), and X = p@ (z“”), @)
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Figure 2: Illustration of the Tree-Based View-Gap Maintaining Multi-View Clustering(TGM-MVC) method. Our framework
consists of 3 stages with 3 modules. In Stage 1, we employ the shared-specific learning module (ShaSpec) to disentangle the
representation of samples on each view into shared representations and view-specific representations. In Stage 2, we utilize the
Shared Tree-based View Consensus Learning Module (ShaTree) to create the View Consensus Distance Matrix using the shared
representations derived in Stage 1. Subsequently, a View Consensus Spanning TreeG is established, narrowing down the shared
representations of adjacent view pairs on the tree. Similarly, the Specific Tree-based View Gap Maintaining Module (SpecTree)
constructs a View Heterogeneity Spanning Tree based on specific representations to preserve the gaps between adjacent views.
The shared and specific representations from all views are concatenated for clustering at Stage 3.

(o)

and X' respectively represent the reconstruction of

()

where X

shared representation 2(”) and specific representation 7" on the
v-th view. Then we optimize the reconstruction loss of all views by

|4
Lrec = Z A

v=11

U == 2+ 52 —x 2,

®)

M=

]
—

where the reconstruction loss of shared and specific representations
from all views are aggregated.

Shared Representations Learning: The ShaSpec module fo-
cuses on the learning of shared representations {Z(v) }le using
contrastive learning to gather consensus information among views.
Its objective is to minimize the differences between shared represen-
tations from different views, thereby bringing them closer together.
The contrastive loss £ins(p, q) between the p-th view and the g-th
view is represented as:

exp(/@" 7))
g ,
=N [exe(r@P 2P m) + exp (1@ 20 /o)
)

/) _

i =

—lo
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Cins =LN ® @
ins (P, q) ZNZ([,- +4 ),

®)

where [(-,-) is the cosine similarity and 7j is the temperature hy-
pothesis. Then the overall contrastive loss L¢on, between any two
views is given by:

V-1 V
Leon= . D" lins(p9)- (6)
p=1g=p+1
Specific Representations Learning: For specific representations
{Z(U) }le, ShaSpec module aims to acquire view heterogeneity by
making the Z(v) orthogonal to the shared representation Z(U) of

that view, thereby designing the loss for specific representations:

V. N
Lon=y. > 1@, 57,

v=1 i=1

@)

where [(-,-) represents the cosine similarity between sample fea-
tures.

In Stage 1, we train the ShaSpec module for T; rounds to de-
couple samples into view consensus information and view hetero-
geneity information, enabling a detailed study of the relationships
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between views in the subsequent stage. The overall loss of Stage 1
learning consists of the reconstruction loss Ly¢c , the contrastive
loss Lcon and the orthogonal loss L, i.e.,

Lpre = Lrec+ 1 Logh + A2 Leon. ®)

where L, and L¢on with A1 and A3 are the weights balancing the
three loss terms.

3.3 Shared Tree-based View Consensus
Learning Module

During the Stage 1, we aim to align the consensus representations of
all views using a contrastive learning paradigm to achieve uniform
representations across all views. However, based on our assump-
tion, there exists view gaps between different views. Disregarding
the view gap and forcibly aligning the representations of arbitrary
pairs of views would lead to the loss of rich multi-view informa-
tion. Therefore, we seek to rectify the consensus representations
obtained from Stage 1 through the Shared Tree-based View Consen-
sus Learning Module (ShaTree), obtaining consensus from adjacent
view pairs instead of all views.

To quantify the proximity relationships between views, we con-
struct the View Consensus Distance Matrix M € RV*V where l\7[pq
represents the cosine similarity distance of the shared representa-
tions between the p-th view and the g-th view:

N
Mg = 1 > (1= IG" 7)), ©)
i=1

where the distance between views is defined as the average co-
sine similarity distance between corresponding samples of the two
views.

If we we conceptualize multiple views as a graph structure,
considering each view as a node and the distance between views
as the edge length between nodes, then the multi-view can be
modeled as a view graph G = (X, &), which contains V nodes
X ={xX® x® __ xV}and C‘Z, edges & = {(XP),X(@) | p,q e
[1, V], p < q}. To simplify the representation, we denote the edge
(X®), x(@)) as (p.q).

To discover the neighborhood relationships between consensus
information of views, we employ the Prim algorithm [55, 56] on
the View Consensus Distance Matrix M to generate a minimum
spanning tree, obtaining a subgraph G = (X,8) of G, which edge
set & = {(p1, q1), (P2, q2), - (PV-1.qv-1)) }-

To guarantee diversity in view information and avoid the direct
merging of shared representations from distant views, we exclu-
sively bring closer the shared representations among view nodes
that correspond to the edges encompassed in the View Consensus
Spanning Tree G. Hence, we adjust Eq.(6) in the Stage 1 as:

L= ts(p.g), (10)

(pa)e&

where £ins (p, q) is the contrastive loss between two views, i.e., x(®)
and X9, as computed in Eq.(5).
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3.4 Specific Tree-based View Gap Maintaining
Module

The specific representation Z(v) learned in Stage 1 is primarily con-
strained by the orthogonal loss and the reconstruction loss. There
remains a risk that the specific representations of various views lack
the necessary distinctiveness since the above two constraints can

hardly ensure that the learned Z(U) fully captures the heterogene-
ity inherent in different views. Given the insights from pertinent
information theory [14], we introduce the concept of information
gap Spq to highlight the potential consequences of homogenizing
the representations across different views for downstream tasks.
Such §4 indicates the difference in the amount of information
provided by the two views for the clustering task. We introduce the
theoretical optimal output Y* in the solution space, such that the
information gap &pq can be defined as:

Spq = I(XP);Y") — (XD %), (11)

where Y* = arg max NMI(Y*,Y).I (X®; Y*) illustrates the amount
Y

of information that the v-th view can contribute to the clustering
task. It is noteworthy that Y is a clustering label used for theoretical
elucidation, thus our task remains inherently unsupervised.

Theorem 1. Suppose there exists encoders hy, : xP) — zP) and
hg : X@ — 7@ such that Z(P) = Z(9) . And the fusion functions
Jx and gz, applying to {X(”)}z;p,q and {Z(U)}z,zp’q respectively,
allow the fused features to retain maximum information content.

Then encoders hy, and hgy would disregard the view gap, resulting
in information loss:

g (XD, X D), Y") = 1(g, (2P, 2\ D), Y*) 2 5pg.  (12)

Theorem 1 elucidates that as the representations of two views
converge completely, it leads to information loss and impairs the
performance of downstream tasks. Additional theoretical analysis
can be found in Appendix A.

According to [52], contrastive learning continuously narrows
the gap between the two views when a plentiful amount of negative
samples are available. To preserve the view gap, apart from avoiding
a direct convergence of shared representations Z(U) between dis-
tant views, we also impose constraints on the view-specific features
using a similar approach. Specifically, we generate the View Het-

erogeneity Distance Matrix M € RV*V based on the view-specific

5 (v)

representations Z" ~ obtained in the Stage 1:

N
M, = % - ra® a0y, (13)
i=1

where [ (ifp ), i;q)) is the cosine similarity between the two repre-
sentations.

Similar to the View Consensus Spanning Tree Q~ we construct a
View Heterogeneity Spanning Tree G = (X, &) based on the View
Heterogeneity Distance Matrix M using the Prim algorithm, where
the pair of views (p, g) in & indicates a higher similarity in specific
representations for the p-th view and the g-th view. To maintain
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the view gap between these two views, we design the loss as:

exp(J(@ P, 5\9) /7))

47 = -log @ 5P @ 5@
=N [exp(r@P. 2y m) + exp (1@ 20 /)|
(14)
N
_ |2 50 _ ;|2
lp(Pq) = || 5 > Z(fi —t’#) : (15)

v=p,q i=1
where fﬂ = ﬁ Zfil (fl.(p) + fl.(q)). Hence, the purpose of £5,(p, q)

is to minimize the variance of the contrastive losses incurred by
any sample in the p-th view and the g-th view.

Theorem 2. Imposing the constraints of £ (p, q) can prevent the
convergence of representations from two views into uniformity, i.e.
Z(P ) * Z(q) , thereby preserving the diverse information present
across the multiple views.

The proof of Theorem 2 is relocated to the Appendix B. In regard
to view pairs within View Heterogeneity Spanning Tree G, we im-
pose constraints using Eq.(15), thereby crafting the loss for specific
representations as:

L= ) tp(pa). (16)

(p.g)eé

3.5 Implementation

In Stage 1, we solely employ the ShaSpec module for training,
decoupling the representations into view-shared and view-specific
representations using Eq.(8).

To uphold the view gaps between views and ensure the richness
of information across multiple views, we calibrate Stage 1 through
Stage 2. Every T, rounds, we reassess the View Consensus Spanning
Tree and View Heterogeneity Spanning Tree, optimizing the en-
tirety through reconstruction loss, orthogonality loss, and two-part
losses acting upon shared and specific representations:

Liotal = Lrec + A1 - Loth + A2 - -Z+ A3z - .ﬁ, (17)

where A1, A2 andA3 are the weights for different parts of loss respec-
tively. Meanwhile, the contrastive loss L¢on in Stage 1 is replaced
by Lin Stage 2.

Upon completion of training in Stage 2, we concatenate the
shared and specific representations across all views to derive the
holistic representation Z of the samples, which is subsequently
employed for the final clustering task:

z=U",Z") e LY, 2", (18)

where symbol | and @ both denote the concatenation on the feature
dimension. The detailed learning process of our proposed TGM-
MVC is shown in Algorithm 1.

4 Experiments

In this section, we validate the effectiveness of our proposed TGM-
MVC by addressing the following four inquiries:
e Q1: How effective does the TGM-MVC method exhibit in
the realm of deep multi-view clustering tasks?
e Q2: How does the View Consensus Spanning Tree influence
the performance of TGM-MVC?
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Algorithm 1 Tree-Based View-Gap Maintaining Multi-View
Clustering(TGM-MVC)

V.
v=1>

Input: The multi-view raw features {X(?)} the interation number T;
and Ty.
Output: The clustering result R.
1: fori=1to T; do
2:  Obtain the shared representations {Z(v) X:l and the specific
representations {Z(u) }le by ShaSpec Module using Eq.(8).
3: end for
4: while the total loss hasn’t converged do
5:  Calculate View Consensus Distance Matrix M and View
Heterogeneity Distance Matrix M using Eq.(9)(13).
6:  Obtain View Consensus Spanning Tree G = (X, &) and View
Heterogeneity Spanning Tree G=(X8) using the Prim algorithm.

7. for j=1to T, do

8: Calculate the total loss Lyz47 using Eq.(17).
9: Updating the network with Adam Optimizer by minimizing
Leotal-
10:  end for
11: end while

12: Concatenate shared and specific representations across all views using
Eq.(18) and then clustering.

13: return R

Table 2: Statistics summary of eight datasets.

Dataset Samples Clusters Views
Synthetic3d 600 3 3
Cora 2708 7 4
ReutersEN 7200 6 5
Caltech101 9144 102 5
ALOI-100 10800 100 4
STL10 13000 10 4

e Q3: How does the View Heterogeneity Spanning Tree influ-
ence the performance of TGM-MVC?

e Q4: How do the hyper-parameters impact the performance
of TGM-MVC?

4.1 Datasets

To demonstrate the efficacy of our TGM-MVC, we conduct elab-
orate experiments on six benchmark datasets: Synthetic3d, Cora,
ReutersEN, Caltech101, ALOI-100, and STL10. The fundamental
characteristics of these six datasets are illustrated in Table 2.

4.2 Experiment Settings

The experimental setup includes an Intel Core i7-7820x CPU, NVIDIA
GeForce RTX 3090 GPU, and 64GB of RAM. For software support,
the experiments were carried out using the PyCharm platform.
Additionally, the training process made use of the Adam optimizer.

4.2.1 Compared Methods. We conducted a comparative analysis
between the TGM-MVC method and eight state-of-the-art MVC
algorithms: DEMVC [57], FMCNOF [58], CoMVC [6], SIMVC [6],
SDMVC [12], MFLVC [51], DSMVC [59], and SEMC [60].
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Table 3: Clustering performance across six multi-view benchmark datasets. The most outstanding results are denoted in bold,
while the second-best values are underlined. ‘-’ indicates the error of the method itself.

Methods
Datasets 5 r = FMCNOF  CoMVC  SIMVC _SDMVC MFLVC DSMVC SEMC TGM-MVC
ACC(%)
Synthetic3d | 71.50 58.33 3883 4800 9733  97.67  77.00  93.17 97.83
Cora 30.54 30.28 2076 2308 3106  31.02 2888 3050 37.59
ReutersEn | 34.58 19.25 2011 2025 2932 2542 3204  16.00 34.78
Caltech101 | 11.05 12.77 1636 1348 1511 2130 1627 1538 20.31
ALOI-100 ; 6.870 1663  11.69 . 2312 1489  57.76 61.26
STL10 30.01 25.09 2355 1604 2834 3114 2753  10.06 32.13
NMI(%)
Synthetic3d | 54.81 13.59 6920 2347  88.19  89.64 4453  76.96 90.51
Cora 6.340 7.270 4640 3010 5120 1297 8140  7.95 13.93
ReutersEn | 11.84 0.640 1720 0790  7.630 3250 9360  12.86 12.34
Caltech101 | 22.84 15.84 2561 1818 3048  28.60 2653  19.06 40.62
ALOI-100 : 31.66 4416  36.21 - 67.88 4057 7162 80.79
STL10 25.27 20.95 1626 6340 2619 2536 1933  0.200 25.93
Purity(%)

Synthetic3d | 71.50 58.33 3883 4967 9733 97.67  77.00  93.17 97.83
Cora 34.56 32.57 3394 3061 3205 3822 3604  33.27 38.44
ReutersEn | 34.69 19.78 21.96 2053 3001 2664 3332 2531 36.36
Caltech101 | 19.66 16.94 2371 1791 2878 2823 2560  19.27 37.33
ALOI-100 : 6.960 1665  11.84 - 2312 1579 60.00 66.22
STL10 31.07 26.02 2501 17.02 3013 3125 2941  10.10 34.48

4.2.2  Evaluation metrics. In order to assess the efficacy and superi-
ority of our TGM-MVC approach, we utilize commonly employed
metrics, namely clustering accuracy (ACC), normalized mutual
information (NMI), and purity (PUR) [61-63].

4.3 Performance Comparison (Q1)

We conducted comparisons with eight benchmark methods across
six datasets. The clustering results are presented in Table 3. From
Table 3, the following conclusions can be drawn:

(1) Our approach outperformed or matched existing state-of-the-
art methods in three metrics across the six datasets. With respect to
Purity, our method outshines the baseline algorithms, especially on
the Caltech101 and ALOI-100 dataset, which surpasses the second-
best algorithm by 8.55% and 6.22%.

(2) These datasets cover multiple views (ranging from 3 to 5
views), and our method excelled on most of these datasets, whereas
other methods achieved satisfactory clustering results on only one
or some of the datasets. We attribute this to our methodology’s
acknowledgment of the view gaps, thereby demonstrating strong
performance on datasets with more views.

4.4 Ablation Studies (Q2 & Q3)

To verify the effectiveness of the ShaTree module and SpecTree
module, we conducted ablation experiments on six datasets. Specif-
ically, we held constant the Share-Specific Representation Learning
Module and tested four scenarios: with or without ShaTree mod-
ule and with or without the SpecTree module. Due to spatial con-
straints, we only present the results of the ablation experiments on
the Synthetic3d, Reuters-7200, and ALOI-100 datasets, as illustrated
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in Table 4. Fig. 3,4 demonstrates the notable changes of ALOI-100
datasets between models with and without the two modules. The
experimental results indicate the following conclusions:

(1) Solely employing the ShaTree module in Stage 2, without
utilizing the SpecTree module, may lead to slight suboptimal out-
comes for the model. This could be due to partial contrastive losses
between view pairs being removed without additional constraints
being introduced, leading to an overall lack of constraints on the
model. As shown in Fig 3, the constraint between view 1 and view 4
has been released, leading to a notable increase in distance between
the views.

(2) In Stage 2, while still aligning shared representations of ar-
bitrary view pairs, the inclusion of SpecTree module effectively
preserves the view gaps between views, enhancing clustering ef-
fects upon the ShaSpec framework. As depicted in Fig 4, utilizing
the SpecTree module iteratively has significantly increased the
distance between heterogeneous representations across views.

(3) The ShaTree module and SpecTree module synergize effec-
tively, with the combined utilization of these two modules resulting
in a greater improvement in clustering performance.

4.5 Hyper-parameter Analysis (Q4)

We kept the temperature hyperparameter 7; for contrastive learning
fixed at 0.1 and the weight A; for orthogonal loss L,;}, fixed at 1,
adjusting only the weight A for shared representation loss L and
the weight A3 for specific representation loss £.

In order to assess the robustness of our model, we conducted
a sensitivity analysis on A3 and A3. From the results in Fig. 5, we
discern a notable influence of A2 on the model’s performance, while
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Figure 3: Visualization of View Consensus Distance Matrix and corresponding view graph on ALOI-100 dataset.
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Figure 4: Visualization of View Heterogeneity Distance Matrix and corresponding view graph on ALOI-100 dataset.

Table 4: Ablation study on Synthetic3d, Reuters-7200 and
ALOI-100. M1, M2 and M3 are abbreviations for ShaSpec Mod-
ule(M1), ShaTree Module(M2) and SpecTree Module(M3), re-
spectively. v denotes TGM-MVC with the Module.

Datasets M1 M2 M3 | ACC NMI PUR

v v v 97.83 90.51 97.83
. v 96.50 86.04 96.50
Synthetic3d |, v | 9683 87.04 96383
v v 96.00 84.57 96.00
VoY Y 3478 1234 3636 (a) ACC on ALOI-100 (b) NMI on ALOI-100
Reuters-7200 v 29.85 8340 29.85
v v 32.61 11.10 33.94
NV 2919  9.660 30.60 Figure 5: Sensitivity analysis of the hyper-parameters on
Vv 7 | 6126 8079 66.22 ALOI-100 dataset.
v 56.87 77.44 62.52
ALOL-100 ), V| 5866 7977  64.72
v Y 53.94 76.09 59.95 TGM-MVC method aims to preserve the distinctiveness among
views, thereby enhancing the efficacy of multi-view clustering.
the impact of A3 is relatively minor. This is because A is also in- Specifically, we separately generate minimum spanning trees for
volved in the training of the first stage, hence changes in A2 have a shared representations and specific representations, relaxing the
stronger impact on the overall training effectiveness of the model. constraints between non-adjacent views in shared representations
. while maintaining the distances between adjacent views in specific
5 Conclusions representations. We provide theoretical justification for the impor-
In this paper, we introduce a novel approach for modeling multiple tance of maintaining view gaps and demonstrate the effectiveness
views utilizing a innovative spanning tree topology. Our proposed of our approach through comprehensive experiments.
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